Skip to main content

Wall-crossing formulas in Hamiltonian geometry

  • Chapter
  • First Online:
Geometric Aspects of Analysis and Mechanics

Part of the book series: Progress in Mathematics ((PM,volume 292))

Abstract

In this article, we study the local invariants associated to the Hamiltonian action of a compact torus. Our main results are wall-crossing formulas between invariants attached to adjacent connected components of regular values of the moment map.

Mathematics Subject Classification (2010): 58J20, 53D20, 53D50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 M.F.ATIYAH,Ellipticoperatorsandcompactgroups,Springer,1974.LecturenotesinMathematics, 401.

    Google Scholar 

  2. M.F. ATIYAH, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14, 1982, pp. 1–15.

    Google Scholar 

  3. M.F. ATIYAH and G.B. SEGAL, The index of elliptic operators II, Ann. Math. 87, 1968, pp. 531–545.

    Google Scholar 

  4. M.F. ATIYAH and I.M. SINGER, The index of elliptic operators I, Ann. Math. 87, 1968, pp. 484–530.

    Google Scholar 

  5. M.F. ATIYAH and I.M. SINGER, The index of elliptic operators III, Ann. Math. 87, 1968, pp. 546–604.

    Google Scholar 

  6. M.F. ATIYAH and I.M. SINGER, The index of elliptic operators IV, Ann. Math. 93, 1971, pp. 139–141.

    Google Scholar 

  7. N. BERLINE,E. GETZLER,and M. VERGNE, Heat kernels and Dirac operators, Grundlehren, vol. 298, Springer, Berlin, 1991.

    Google Scholar 

  8. N.BERLINE andM.VERGNE,TheCherncharacterofatransversallyellipticsymbolandthe equivariant index, Invent. Math. 124, 1996, pp. 11–49.

    Google Scholar 

  9. N. BERLINE and M. VERGNE, L’indice equivariant des op´erateurs transversalement ellip ´tiques, Invent. Math. 124, 1996, pp. 51–101.

    Google Scholar 

  10. S. BILLEY,V. GUILLEMIN,and E. RASSART, A vector partition function for the multiplicities of slk (C), J. Algebra 278, 2004, pp. 251–293.

    Google Scholar 

  11. A. BOYSAL and M. VERGNE, Paradan’s wall crossing formula for partition functions and Khovanski–Pukhlikov differential operator, arXiv:math, CO/0803.2810.

    Google Scholar 

  12. M. BRION and C. PROCESI, Action d’un tore dans une vari´et´e projective, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 509–539, Progr. Math., 92, Birkh¨auser Boston, Boston, MA, 1990.

    Google Scholar 

  13. W. DAHMEN and C.A. MICHELLI, The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308, 1988, pp. 509–532.

    Google Scholar 

  14. C.DECONCINI,C.PROCESI,andM.VERGNE,PartitionfunctionandgeneralizedDahmen– Micchelli spaces, arXiv:math, CO/0805.2907.

    Google Scholar 

  15. J.J.DUISTERMAAT andG.J.HECKMAN,Onthevariationinthecohomologyinthesymplectic form of the reduced phase space, Invent. Math. 69, 1982, pp. 259–268; addendum, ibid. 72, 1983; pp. 153–158.

    Google Scholar 

  16. J.J. DUISTERMAAT, The heat Lefschetz fixed point formula for the Spin c -Dirac operator, Progress in Nonlinear Differential Equations and Their Applications, vol. 18, Birkh¨auser, Boston, 1996.

    Google Scholar 

  17. V. GUILLEMIN,E. LERMAN,and S. STERNBERG, Symplectic fibrations and multiplicity diagrams. Cambridge University Press 1996.

    Google Scholar 

  18. V. GUILLEMIN and S. STERNBERG, Convexity properties of the moment mapping, Invent. Math. 67, 1982, pp. 491–513.

    Google Scholar 

  19. V. GUILLEMIN and S. STERNBERG,Geometricquantizationandmultiplicitiesofgrouprepresentations, Invent. Math. 67, 1982, pp. 515–538.

    Google Scholar 

  20. V.GUILLEMIN andS.STERNBERG,Birationalequivalenceinthesymplecticcategory, Invent. Math. 97, 1989, pp. 485–522.

    Google Scholar 

  21. V. GUILLEMIN and S. STERNBERG, Supersymmetry and equivariant de Rham theory. With an appendix containing two reprints by Henri Cartan. Mathematics Past and Present. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  22. G. J. HECKMAN, Projections of orbits and asymptotic behavior of multiplicities for compact Lie groups, PhD thesis, University of Leiden, 1980.

    Google Scholar 

  23. T. KAWASAKI, The Riemann–Roch theorem for complex V-manifolds, Osaka J. Math. 16, 1979, pp. 151–157.

    Google Scholar 

  24. F. KIRWAN, Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Princeton, 1984.

    Google Scholar 

  25. B. KOSTANT, On convexity, the Weyl group and the Iwasawa decomposition, Annales Scientifiques de l’E. N. S. 6, 1973, pp. 413–455.

    Google Scholar 

  26. S. KUMAR and M. VERGNE, Equivariant cohomology with generalized coefficients, Ast´erisque, 215, 1993, pp. 109–204.

    Google Scholar 

  27. E. MEINRENKEN,On Riemann–Roch formulas for multiplicities, J. Amer. Math. Soc. 9, 1996, pp. 373–389.

    Google Scholar 

  28. E.MEINRENKEN,SymplecticsurgeryandtheSpinc-Diracoperator, Adv. in Math. 134, 1998, pp. 240–277.

    Google Scholar 

  29. E.MEINRENKEN andS.SJAMAAR,Singularreductionandquantization, Topology 38, 1999, pp. 699–762.

    Google Scholar 

  30. P.-E. PARADAN, Formules de localisation en cohomologie ´equivariante, Compositio Mathematica 117, 1999, pp. 243–293.

    Google Scholar 

  31. P.-E.PARADAN,Themomentmapandequivariantcohomologywithgeneralizedcoefficient, Topology 39, 2000, pp. 401–444.

    Google Scholar 

  32. P.-E. PARADAN, Localization of the Riemann–Roch character, J. Funct. Anal. 187, 2001, pp. 442–509.

    Google Scholar 

  33. P.-E. PARADAN,NotesurlesformulesdesautdeGuillemin–Kalkman, C. R. Acad. Sci. Paris, Ser. I 339, 2004, pp. 467–472.

    Google Scholar 

  34. R. SJAMAAR, Symplectic reduction and Riemann–Roch formulas for multiplicities, Bull. Amer. Math. Soc. 33, 1996, pp. 327–338.

    Google Scholar 

  35. B. STURMFELS, On vector partition functions, J. Combinatorial Theory 71, 1995, pp. 302–309.

    Google Scholar 

  36. A. SZENES and M. VERGNE, Residue formulae for vector partitions and Euler–Maclaurin sums, Adv. in Applied Math. 30, 2003, pp. 295–342.

    Google Scholar 

  37. M. VERGNE, Multiplicity formula for geometric quantization, Part I, Part II, and Part III, Duke Math. Journal 82, 1996, pp. 143–179, pp. 181–194, pp. 637–652.

    Google Scholar 

  38. M.VERGNE,Quantificationg´eom´etriqueetr´eductionsymplectique, S´eminaire Bourbaki 888, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Emile Paradan .

Editor information

Editors and Affiliations

Additional information

Dedicated to Hans Duistermaat on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Buisness Media, LLC

About this chapter

Cite this chapter

Paradan, PE. (2011). Wall-crossing formulas in Hamiltonian geometry. In: Kolk, J., van den Ban, E. (eds) Geometric Aspects of Analysis and Mechanics. Progress in Mathematics, vol 292. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8244-6_11

Download citation

Publish with us

Policies and ethics