Skip to main content

Space-Time Adaptive Multiresolution Techniques for Compressible Euler Equations

  • Chapter
The Courant–Friedrichs–Lewy (CFL) Condition

Abstract

This paper considers space-time adaptive techniques for finite volume schemes with explicit time discretization. The purpose is to reduce memory and to speed-up computations by a multiresolution representation of the numerical solution on adaptive grids which are introduced by suitable thresholding of its wavelet coefficients. Further speed-up is obtained by the combination of the multiresolution scheme with an adaptive strategy for time integration, which is classical for ODE simulations. It considers variable time steps, controlled by a given precision, using embedded Runge–Kutta schemes. As an alternative to the celebrated CFL condition, the aim in the application of such an time-adaptive scheme for PDE simulations is to obtain accurate and safe integrations. The efficiency of this adaptive space-time method is analyzed in applications to typical Riemann–Lax test problems for the compressible Euler equations in one and two space dimensions. The results show that the accuracy properties of the reference finite volume scheme on the finest regular grid, where the time step is determined by the CFL condition, is preserved. Nevertheless, both CPU time and memory requirements are considerably reduced, thanks to the efficient self-adaptive grid refinement and controlled time-stepping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall, R.: Multiresolution analysis on unstructured meshes: applications to CFD. In: Chetverushkin, B.E.A. (ed.) Experimentation, Modelling and Computation in Flow, Turbulence and Combustion. Wiley, New York (1997)

    Google Scholar 

  2. Bendahmane, M., Bürger, R., Ruiz, R., Schneider, K.: Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems. Appl. Numer. Math. 59, 1668–1692 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M.J., Collela, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 67–84 (1989)

    Article  Google Scholar 

  4. Bihari, B.L.: Multiresolution schemes for conservation laws with viscosity. J. Comput. Phys. 123, 207–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bürger, R., Ruiz, R., Schneider, K.: Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43, 262–290 (2010)

    Article  Google Scholar 

  6. Chiavassa, G., Donat, R.: Point value multi-scale algorithms for 2D compressible flow. SIAM J. Sci. Comput. 23(3), 805–823 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003)

    MATH  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations. ESAIM Proc. 29, 28–42 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time stepping for evolutionary PDEs. J. Comput. Phys. 227(8), 3758–3780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations. Appl. Numer. Math. 59, 2303–2321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Domingues, M.O., Roussel, O., Schneider, K.: An adaptive multiresolution method for parabolic PDEs with time-step control. Int. J. Numer. Methods Eng. 78, 652–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferm, L., Löstedt, P.: Space-time adaptive solutions of first order PDEs. J. Sci. Comput. 26(1), 83–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaibara, M., Gomes, S.M.: A fully adaptive multiresolution scheme for shock computations. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications. Kluwer Academic/Plenum Publishers, New York (2001)

    Google Scholar 

  17. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leveque, R.J.: Finite Volume Methods for Hyperbolic Systems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  19. Liou, M.S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Lectures Notes in Computational Science and Engineering, vol. 27. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  21. Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roussel, O., Schneider, K.: An adaptive multiresolution method for combustion problems: application to flame ball–vortex interaction. Comput. Fluids 34(7), 817–831 (2005)

    Article  MATH  Google Scholar 

  23. Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schneider, K., Vasilyev, O.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473–503 (2010)

    Article  MathSciNet  Google Scholar 

  25. Schulz-Rinne, C.W., Collis, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Text in Applied Mathematics, vol. 12. Springer, Berlin (1991)

    Google Scholar 

  27. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  Google Scholar 

  28. Zhang, T., Zheng, Y.: Conjecture on the structure of solutions the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M.O. Domingues and S. Gomes acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant number: 2012/07281-2, 07/52015-0), and from CNPq (grant number 306828/2010-3, 307511/2010-3, 483226/2011-4)—the Brazilian Research Council, Brazil. They are also grateful for the financial support for visiting positions at École Centrale de Marseille (M.O. Domingues and S.M. Gomes) and Université de Provence (S.M. Gomes). K. Schneider thanks Prof. Carlos de Moura for the invitation to the conference “CFL-Condition: 80 years gone by”, held in Rio de Janeiro in May, 2010. He also acknowledges financial support from the PEPS program of INSMI–CNRS. The authors are grateful to Dominique Fougère, Varlei E. Menconni, and Michel Pognant for their helpful computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K. (2013). Space-Time Adaptive Multiresolution Techniques for Compressible Euler Equations. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_7

Download citation

Publish with us

Policies and ethics