Skip to main content

Part of the book series: Human-Computer Interaction Series ((HCIS))

  • 4804 Accesses

Abstract

This chapter sheds some light on analytical methods to support the analysis of time-oriented data. A general overview of temporal data analysis is provided and specific application examples will be used for demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antunes, C. M. and Oliveira, A. L. (2001). Temporal Data Mining: An Overview. Workshop on Temporal Data Mining at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).

    Google Scholar 

  • Bade, R., Schlechtweg, S., and Miksch, S. (2004). Connecting Time-oriented Data and Information to a Coherent Interactive Visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 105–112, New York, NY, USA. ACM Press.

    Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (2009). Time Series: Theory and Methods. Springer, New York, USA, 2nd edition.

    MATH  Google Scholar 

  • Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27(3):289–350.

    Article  Google Scholar 

  • Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer, Berlin, Germany.

    Book  Google Scholar 

  • Fayyad, U., Grinstein, G. G., and Wierse, A. (2001). Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco, CA, USA.

    Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3):37–54.

    Google Scholar 

  • Gan, G., Ma, C., and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, USA.

    Book  MATH  Google Scholar 

  • Han, J. and Kamber, M. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, CA, USA.

    Google Scholar 

  • Hsu, W., Lee, M. L., and Wang, J. (2008). Temporal and Spatio-Temporal Data Mining. IGI Global, Hershey, PA, USA.

    Google Scholar 

  • Jackson, J. E. (2003). A User’s Guide to Principal Components, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Surveys, 31:264–323.

    Article  Google Scholar 

  • Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R. (2009). iPCA: An Interactive System for PCA-based Visual Analytics. Computer Graphics Forum, 28(3):767–774.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal Component Analysis, Springer Series in Statistics. Springer, New York, NY, USA, 2nd edition.

    MATH  Google Scholar 

  • Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the Information Age – Solving Problems with Visual Analytics. Eurographics Association, Geneve, Switzerland.

    Google Scholar 

  • Keim, D. A., Mansmann, F., Schneidewind, J., and Ziegler, H. (2006). Challenges in Visual Data Analysis. In Proceedings of the International Conference Information Visualisation (IV), pages 9–16, Los Alamitos, CA, USA. IEEE Computer Society.

    Chapter  Google Scholar 

  • Laxman, S. and Sastry, P. (2006). A Survey of Temporal Data Mining. Sādhanā, 31:173–198.

    MathSciNet  MATH  Google Scholar 

  • Lin, J., Keogh, E. J., Wei, L., and Lonardi, S. (2007). Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 15(2):107–144.

    Article  MathSciNet  Google Scholar 

  • Miksch, S., Horn, W., Popow, C., and Paky, F. (1996). Utilizing Temporal Data Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants. Artificial Intelligence in Medicine, 8(6):543–576.

    Article  Google Scholar 

  • Miksch, S., Seyfang, A., Horn, W., and Popow, C. (1999). Abstracting Steady Qualitative Descriptions over Time from Noisy, High-Frequency Data. In Proceedings of the Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making (AIMDM), pages 281–290, Berlin, Germany. Springer.

    Google Scholar 

  • Mitsa, T. (2010). Temporal Data Mining. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Boca Raton, FL, USA.

    Book  MATH  Google Scholar 

  • Nocke, T., Schumann, H., and Böhm, U. (2004). Methods for the Visualization of Clustered Climate Data. Computational Statistics, 19(1):75–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336–343, Los Alamitos, CA, USA. IEEE Computer Society.

    Chapter  Google Scholar 

  • Stacey, M. and McGregor, C. (2007). Temporal Abstraction in Intelligent Clinical Data Analysis: A Survey. Artificial Intelligence in Medicine, 39(1):1–24.

    Article  Google Scholar 

  • Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society, Los Alamitos, CA, USA.

    Google Scholar 

  • Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and Calendar Based Visualization of Time Series Data. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 4–9, Los Alamitos, CA, USA. IEEE Computer Society.

    Chapter  Google Scholar 

  • Ware, C. (2008). Visual Thinking for Design. Morgan Kaufmann, Burlington, MA, USA.

    Google Scholar 

  • Wegner, P. (1997). Why Interaction Is More Powerful Than Algorithms. Communications of the ACM, 40(5):80–91.

    Article  Google Scholar 

  • Xu, R. and Wunsch II, D. C. (2009). Clustering. John Wiley & Sons, Inc., Hoboken, NJ, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Aigner, W., Miksch, S., Schumann, H., Tominski, C. (2011). Analytical Support. In: Visualization of Time-Oriented Data. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-0-85729-079-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-079-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-078-6

  • Online ISBN: 978-0-85729-079-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics