Skip to main content

Classical Signal Theory

  • Chapter
Unified Signal Theory

Abstract

In this chapter, we outline the Signal Theory as it is usually presented in textbooks, where each class of signals is separately developed. “Separately” means that, for each class, definitions and development are presented independently. For convenience, we call this approach the Classical Signal Theory in contrast to the approach of this book, the Unified Signal Theory. The classes of signals we will consider are:

  1. 1.

    Aperiodic continuous-time signals,

  2. 2.

    Periodic continuous-time signals,

  3. 3.

    Periodic discrete-time signals,

  4. 4.

    Periodic discrete-time signals.

These classes are introduced to give readers the classical background, before dealing with the Unified Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The above relations hold for t≠0. For t=0 we may have a discontinuity, as shown in Fig. 2.2. The problem of the signal value at discontinuities will be discussed below (see (2.19)).

  2. 2.

    Strictly speaking, a pulse denotes a signal of “short” duration, but more generally this term is synonymous with aperiodic signal.

  3. 3.

    For real signals, it is customary to call as the band the half of the spectral extension measure.

  4. 4.

    We prefer to reserve the term transfer function to the Laplace transform of the impulse response.

References

  1. R.N. Bracewell, The Fourier Transform and Its Applications, 2nd edn. (McGraw–Hill, New York, 1986)

    Google Scholar 

  2. A. Papoulis, The Fourier Integral and Its Applications (McGraw–Hill, New York, 1962)

    MATH  Google Scholar 

  3. W. Rudin, Functional Analysis (McGraw–Hill, New York, 1991)

    MATH  Google Scholar 

  4. L. Schwartz, Théorie des Distributions (Hermann, Parigi, 1966)

    MATH  Google Scholar 

  5. G. Sansone, Orthogonal Functions (Interscience, New York, 1959)

    MATH  Google Scholar 

  6. E.C. Titchmars, Introduction to the Theory of Fourier Integrals (Oxford University Press, New York, 1937)

    Google Scholar 

  7. P.M. Woodward, Probability and Information Theory, with Applications to Radar (Pergamon/Macmillan & Co., New York, 1953)

    MATH  Google Scholar 

Books on Classical Signal Theory

  1. G. Cariolaro, Teoria dei Segnali Determinati (Patron, Bologna, 1977)

    Google Scholar 

  2. H.S. Carslaw, Introduction to the Theory of Fourier’s Series and Integrals, 3rd edn. (Dover, New York, 1952)

    Google Scholar 

  3. G.R. Cooper, C.D. McGillem, Methods of Signal and System Analysis (Holt, Rinehart and Winston, New York, 1967)

    MATH  Google Scholar 

  4. G.R. Cooper, C.D. McGillem, Continuous and Discrete Signal and System Analysis (Holt, Rinehart and Winston, New York, 1974)

    MATH  Google Scholar 

  5. J.B. Cruz, M.E. Van Valkenburg, Signals in Linear Circuits (Houghton Mifflin, Boston, 1974)

    Google Scholar 

  6. H. Dym, H.P. McKean, Fourier Series and Integrals (Academic Press, New York, 1972)

    MATH  Google Scholar 

  7. L.E. Franks, Signal Theory (Prentice Hall, Englewood Cliffs, 1969)

    MATH  Google Scholar 

  8. R.A. Gabel, R.A. Roberts, Signals and Linear Systems (Wiley, New York, 1973)

    Google Scholar 

  9. D. Lindner, Introduction to Signals and Systems (McGraw–Hill, New York, 1999)

    Google Scholar 

  10. A.V. Oppenheim, A.S. Willsky, I.T. Young, Signals and Systems (Prentice Hall, Englewood Cliffs, 1983)

    MATH  Google Scholar 

  11. A. Papoulis, Signal Analysis (McGraw–Hill, New York, 1977)

    MATH  Google Scholar 

  12. A. Papoulis, Circuits and Systems (Holt, Rinehart and Winston, New York, 1980)

    Google Scholar 

  13. L.R. Rabiner, C.M. Rader (eds.), Digital Signal Processing (IEEE Press, New York, 1972)

    Google Scholar 

  14. M.J. Roberts, Signals and Systems (McGraw–Hill, New York, 2003)

    Google Scholar 

  15. L. Schwartz, Information Transmission, Modulation and Noise: A Unified Approach to Communications Systems, 3rd edn. (McGraw–Hill, New York, 1980)

    Google Scholar 

  16. J. Sherrick, Concepts in Signals and Systems (Prentice Hall, Englewood Cliffs, 2001)

    Google Scholar 

  17. W.M. Siebert, Circuits, Signals and Systems (McGraw–Hill, New York, 1986)

    Google Scholar 

  18. S. Soliman, M. Srinath, Continuous and Discrete Signals and Systems (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Cariolaro .

Appendix: Fourier Transform of the Signum Signal sgn(t)

Appendix: Fourier Transform of the Signum Signal sgn(t)

The Fourier transform definition (2.55b) yields

$$\int_{-\infty}^{+\infty}\mathop{\mathrm{sgn}}\nolimits (t)\mathrm{e}^{-\mathrm{i}2\pi ft}\, \mathrm{d} t =\frac{2}{\mathrm{i}} \int_0^{\infty} \sin2\pi ft\, \mathrm{d} t .$$

These integrals do not exist. However, sgn (t) can be expressed as the inverse Fourier transform of the function 1/(iπf), namely

$$\mathop{\mathrm{sgn}}\nolimits (t) = \int_{-\infty}^{+\infty }\frac{1}{\mathrm{i}\pi f}\mathrm{e}^{\mathrm{i}2\pi ft}\, \mathrm{d} f\,\buildrel \varDelta \over= \, x(t) $$
(2.113a)

provided that the integral is interpreted as a Cauchy principal value, i.e.,

$$x(t)= \int_{-\infty}^{+\infty}\frac{1}{\mathrm{i}\pi f}\mathrm{e}^{\mathrm{i}2\pi ft}\, \mathrm{d} f =\lim_{F\rightarrow\infty} \int_{-F}^F\frac{1}{\mathrm{i}\pi f}\mathrm{e}^{\mathrm{i}2\pi ft}\, \mathrm{d} f . $$
(2.113b)

Using Euler’s formula, we get

$$x(t)=\int_{-\infty}^{+\infty}\frac{1}{\mathrm{i}\pi f}\cos(2\pi ft)\,\mathrm{d} f +\int_{-\infty}^{+\infty}\frac{1}{\pi f}\sin(2\pi ft)\,\mathrm{d} f$$

where the integrand (1/i2πf)cos (2πf) in an odd function of f, and therefore the integral is zero. Then

$$x(t)=\int_{-\infty}^{+\infty}\frac{\sin(2\pi ft)}{\pi f}\,\mathrm {d} f .$$

Now, for t=0 we find x(0)=0. For t≠0, letting

$$2ft \to u,\qquad\mathrm{d} f \to\frac{\mathrm{d} u}{2t},$$

we obtain

$$x(t)=\begin{cases}\int_{-\infty}^{+\infty}\frac{\sin(\pi u)}{\pi u}\,\mathrm{d} u&\hbox{for}\ t>0;\cr \int_{+\infty}^{-\infty}\frac{\sin(\pi u)}{\pi u}\,\mathrm{d} u =-\int_{-\infty}^{+\infty}\frac{\sin(\pi u)}{\pi u}\,\mathrm{d} u&\hbox{for}\ t<0.\end{cases}$$

It remains to evaluate the integral

$$I=\int_{-\infty}^{+\infty}\frac{\sin(\pi u)}{\pi u}\,\mathrm{d} u=\int_{-\infty}^{+\infty}\mathop{\mathrm{sinc}}\nolimits (u)\,\mathrm{d} u .$$

To this end, we use the rule (2.61) giving for a Fourier pair s(t),S(f)

$$\mathop{\mathrm{area}}\nolimits (S)=\int_{-\infty}^{+\infty}S(f)\,\mathrm{d} f=s(0)$$

with s(t)=rect(t), S(f)=sinc(f) (see (2.64a, 2.64b)). Hence, we obtain

$$\int_{-\infty}^{+\infty}\mathop{\mathrm{sinc}}\nolimits (f)\,\mathrm{d} f=s(0)=\mathop{\mathrm{rect}}\nolimits (0)=1.$$

Combination of the above results gives x(t)=sgn(t).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cariolaro, G. (2011). Classical Signal Theory. In: Unified Signal Theory. Springer, London. https://doi.org/10.1007/978-0-85729-464-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-464-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-463-0

  • Online ISBN: 978-0-85729-464-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics