Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2739 Accesses

Abstract

This chapter gives an overview of the recent developments in the area of fault detection and fault tolerance control. It is intended to provide motivation for the theoretical developments which follow in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Flight 232 suffered tail engine failure causing total loss of hydraulics [41, 109].

  2. 2.

    The freighter shed engine No. 1, but the crew managed to land safely.

  3. 3.

    The A300B4 was hit by a missile and lost all hydraulics, but landed safely [41].

References

  1. Civil aviation safety data. Technical report, Civil Aviation Authority of the Netherlands (CAA-NL) (2003)

    Google Scholar 

  2. Anon: EL AL flight 1862, aircraft accident report 92-11. Technical report, Netherlands Aviation Safety Board, Hoofddorp (1994)

    Google Scholar 

  3. Anon: Uncontrolled descent and collision with terrain, USAIR flight 427, Boeing 737-300, N513AU, near Aliquippa, Pennsylvania September 8, 1994. Aircraft accident report NTSB/AAR-99-01, National Transportation Safety Board (1994)

    Google Scholar 

  4. Aravena, J., Zhou, K., Li, X.R., Chowdhury, F.: Fault tolerant safe flight controller bank. In: Proceedings of the IFAC Symposium SAFEPROCESS ’06, Beijing, China, pp. 807–812 (2006)

    Google Scholar 

  5. Åström, K.J., Hagglund, T.: Pid Controllers: Theory, Design and Tuning. Instrument Society of America, Research Triangle Park (1995)

    Google Scholar 

  6. Åström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Balas, G.J.: Linear, parameter-varying control and its application to a turbofan engine. Int. J. Robust Nonlinear Control 12, 763–796 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordignon, K.A., Durham, W.C.: Closed-form solutions to constrained control allocation problem. J. Guid. Control Dyn. 18(5), 1000–1007 (1995)

    Article  Google Scholar 

  9. Bošković, J.D., Mehra, R.K.: A multiple model-based reconfigurable flight control system design. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4503–4508 (1998)

    Google Scholar 

  10. Bošković, J.D., Mehra, R.K.: Control allocation in overactuated aircraft under position and rate limiting. In: Proceedings of the American Control Conference, Anchorage, AL, USA, pp. 791–796 (2002)

    Google Scholar 

  11. Buffington, J.: Tailless aircraft control allocation. In: AIAA Guidance, Navigation and Control, pp. 737–747 (1997)

    Google Scholar 

  12. Buffington, J., Chandler, P., Pachter, M.: Online system identification for aircraft with distributed control effectors. Int. J. Robust Nonlinear Control 9, 1033–1049 (1999)

    Article  Google Scholar 

  13. Buffington, J.M., Enns, D.F.: Lyapunov stability analysis of daisy chain control allocation. J. Guid. Control Dyn. 19, 1226–1230 (1996)

    Article  MATH  Google Scholar 

  14. Burcham, F.W., Burken, J., Maine, T.A., Bull, J.: Emergency flight control using only engine thrust and lateral center-of-gravity offset: A first look. Technical memorandum NASA/TM-4789, NASA (1997)

    Google Scholar 

  15. Burcham, F.W., Fullertron, C.G., Maine, T.A.: Manual manipulation of engine throttles for emergency flight control. Technical report NASA/TM-2004-212045, NASA (2004)

    Google Scholar 

  16. Burcham, F.W., Maine, T.A., Burken, J., Bull, J.: Using engine thrust for emergency flight control: MD-11 and B-747 results. Technical memorandum NASA/TM-1998-206552, NASA (1998)

    Google Scholar 

  17. Burcham, F.W., Maine, T.A., Kaneshinge, J., Bull, J.: Simulator evaluation of simplified propulsion-only emergency flight control system on transport aircraft. Technical report NASA/TM-1999-206578, NASA (1999)

    Google Scholar 

  18. Burken, J., Burcham, J.W., Trindel, A.M., Feather, J., Goldthorpe, S., Kahler, J.A.: Flight test of propulsion-based emergency control system on the MD-11 airplane with emphasis on the lateral axis. Technical report NASA/TM-4746, NASA (1996)

    Google Scholar 

  19. Chen, J., Patton, R.J.: Robust Model-based Fault Diagnosis for Dynamic Systems. Kluwer Academic, Norwell (1999)

    MATH  Google Scholar 

  20. Corradini, M.L., Orlando, G., Parlangeli, G.: A fault tolerant sliding mode controller for accommodating actuator failures. In: 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 3091–3096 (2005)

    Chapter  Google Scholar 

  21. Davidson, J.B., Lallman, F.J., Bundick, W.T.: Real-time adaptive control allocation applied to a high performance aircraft. In: 5th SIAM Conference on Control & Its Application, San Diego, CA, USA (2001)

    Google Scholar 

  22. Deyst Jr., J.J., Harrison, J.V., Gai, E., Daly, K.C.: Fault detection, identification and reconfiguration for spacecraft systems. J. Astronaut. Sci. 29, 113–26 (1981)

    Google Scholar 

  23. Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms and Tools. Springer, Berlin (2008)

    Google Scholar 

  24. Dumont, G.A., Huzmezan, M.: Concepts, methods and techniques in adaptive control. In: Proceedings of the American Control Conference, Anchorage, AK, USA, pp. 1137–1150 (2002)

    Google Scholar 

  25. Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection. Automatica 36, 541–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)

    Google Scholar 

  27. Edwards, C., Spurgeon, S.K.: A sliding mode control observer based FDI scheme for the ship benchmark. Eur. J. Control 6, 341–356 (2000)

    Google Scholar 

  28. Enns, D.: Control allocation approaches. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Boston, MA, pp. 98–108 (1998)

    Google Scholar 

  29. Ganguli, S., Marcos, A., Balas, G.J.: Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. In: American Control Conference, Anchorage, AK, USA, pp. 3612–3617 (2002)

    Google Scholar 

  30. Gao, Z., Antsaklis, P.J.: Stability of the pseudo–inverse method for reconfigurable control. Int. J. Control 53(3), 717–729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Georgie, J., Valasek, J.: Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic re-entry vehicles. J. Guid. Control Dyn. 26, 811–819 (2003)

    Article  Google Scholar 

  32. Gero, D.: Aviation Disasters: The World’s Major Civil Airliner Crashes Since 1950. Patrick Stephens, Sparkford (2006)

    Google Scholar 

  33. Gopinathan, M., Bošković, J.D., Mehra, R.K., Rago, C.: A multiple model predictive scheme for fault-tolerant flight control design. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 1376–1381 (1998)

    Google Scholar 

  34. Gunnarsson, M.: Parameter estimation for fault diagnosis of an automotive engine using extended Kalman filters. Master Thesis, Linköpings University (2001)

    Google Scholar 

  35. Härkegård, O., Glad, S.T.: Resolving actuator redundancy—optimal control vs. control allocation. Automatica 41(1), 137–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid. Control Dyn. 26, 452–462 (2003)

    Article  Google Scholar 

  37. Huzmezan, M., Maciejowski, J.: Reconfigurable flight control methods and related issues—a survey. Technical report prepared for the DERA under the research agreement No. ASF/3455, University of Cambridge (1997)

    Google Scholar 

  38. Ito, D., Georgie, J., Vasalek, J., Ward, D.T.: Re-entry vehicle flight control design guidelines: dynamic inversion. Technical report NASA/TP-2002-210771, NASA (2002)

    Google Scholar 

  39. Ito, D., Vasalek, J., Ward, D.T.: Robust dynamic inversion controller design and analysis for the X-38. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2001)

    Google Scholar 

  40. Izadi-Zamanabadi, R., Blanke, M.: A ship propulsion system as a benchmark for fault-tolerant control. In: Proceedings of the IFAC Symposium—SAFEPROCESS ’97, Hull, UK, pp. 1074–1081 (1997)

    Google Scholar 

  41. Jiang, J., Zhang, Y.: Accepting performance degradation in fault-tolerant control system design. IEEE Trans. Control Syst. Technol. 14, 284–292 (2006)

    Article  Google Scholar 

  42. Jones, C.N.: Reconfigurable flight control: First year report. Technical report, Cambridge University Engineering Department (2005)

    Google Scholar 

  43. Joosten, D.A., van den Boom, T.J.J., Lombaerts, T.J.J.: Effective control allocation in fault-tolerant flight control using feedback linearization and model predictive control. In: European Control Conference (2007)

    Google Scholar 

  44. Kanev, S., Verhaegen, M.: A bank of reconfigurable LQG controllers for linear systems subjected to failures. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 3684–3689 (2000)

    Google Scholar 

  45. Kanev, S., Verhaegen, M.: Controller reconfiguration for non-linear systems. Control Eng. Pract. 8, 1223–35 (2000)

    Article  Google Scholar 

  46. Kim, Y.W., Rizzoni, G., Utkin, V.: Automotive engine diagnosis and control via nonlinear estimation. IEEE Control Syst. Mag. 18, 884–99 (1998)

    Google Scholar 

  47. Kim, Y.W., Rizzoni, G., Utkin, V.: Developing a fault tolerant power train system by integrating the design of control and diagnostics. Int. J. Robust Nonlinear Control 11, 1095–1114 (2001)

    Article  MATH  Google Scholar 

  48. Leith, D.J., Leithead, W.E.: Survey of gain-scheduling analysis and design. Int. J. Control 73, 1001–1025 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, G.P., Patton, R.J.: Eigenstructure Assignment for Control System Design. Wiley, New York (1998)

    Google Scholar 

  50. Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Real time damaged aircraft model identification for reconfiguring flight control. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, SC, USA, pp. 1207–1231 (2007)

    Google Scholar 

  51. Maciejowski, J.M.: Multivariable Feedback Design. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  52. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, New York (2002)

    Google Scholar 

  53. Maciejowski, J.M., Jones, C.N.: MPC fault-tolerant control case study: flight 1862. In: Proceedings of the IFAC Symposium SAFEPROCESS ’03, WA, USA, pp. 119–124 (2003)

    Google Scholar 

  54. Magni, J.F., Bennani, S., Terlouw, J.: Robust Flight Control: A Design Challenge. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  55. Marcos, A.: A linear parameter varying model of the BOEING 747-100/200 longitudinal motion. Master of science thesis, University of Minnesota (2001)

    Google Scholar 

  56. Marcos, A., Ganguli, S., Balas, G.J.: An application of H ∞ fault detection and isolation to a transport aircraft. Control Eng. Pract. 13(1), 105–119 (2005)

    Article  Google Scholar 

  57. McLean, D., Aslam-Mir, S.: Reconfigurable flight control systems. In: International Conference on Control ’91 (Conf. Publ. No. 332), pp. 234–242 (1991)

    Google Scholar 

  58. Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42, 171–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control using multiple models. Int. J. Adapt. Control Signal Process. 17, 87–102 (2003)

    Article  MATH  Google Scholar 

  60. Ni, L., Fuller, C.R.: Control reconfiguration based on hierarchical fault detection and identification for unmanned underwater vehicle. J. Vib. Control 9, 753–748 (2003)

    Article  Google Scholar 

  61. Omerdic, E., Toal, D.: Control allocation of over-actuated thruster-propelled underwater vehicles. In: 1st Workshop on Networked Control System and Fault Tolerant Control, Ajaccio, France, pp. 163–171 (2005)

    Google Scholar 

  62. Patton, R.J.: Fault tolerant control: the 1997 situation. In: Proceedings of the IFAC Symposium—SAFEPROCESS ’97, Hull, UK, pp. 1035–1055 (1997)

    Google Scholar 

  63. Rago, C., Prasanth, R., Mehra, R.K., Fortenbaugh, R.: Failure detection and identification and fault tolerant control using the IMM-KF with applications to the eagle-eye UAV. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4208–4213 (1998)

    Google Scholar 

  64. Rodrigues, M., Theilliol, D., Aberkane, S., Sauter, D.: Fault tolerant control design for polytopic LPV systems. Int. J. Appl. Math. Comput. Sci. 17, 27–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Rosenbrock, H.H.: State Space and Multivariable Theory. Wiley, New York (1970)

    MATH  Google Scholar 

  66. Sánchez, J.M.M., Rodellar, J.: Adaptive Predictive Control: From the Concepts to Plant Optimization. Prentice Hall, New York (1996)

    MATH  Google Scholar 

  67. Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 219(4), 321–328 (2005),

    Article  Google Scholar 

  68. Shin, J., Belcastro, C.M.: Performance analysis on fault tolerant control system. IEEE Trans. Control Syst. Technol. 14, 920–925 (2006)

    Article  Google Scholar 

  69. Shin, J., Wu, N.E., Belcastro, C.: Adaptive linear parameter varying control synthesis for actuator failure. J. Guid. Control Dyn. 27, 787–794 (2004)

    Article  Google Scholar 

  70. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (1996)

    Google Scholar 

  71. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  72. Smaili, M.H.: Flightlab 747: Benchmark for advance flight control engineering. Technical report, Technical University Delft, The Netherlands, 1999

    Google Scholar 

  73. Sorenson, H.W.: Kalman Filtering: Theory and Application. IEEE Press, New York (1985)

    Google Scholar 

  74. Tandale, M.D., Valasek, J.: Adaptive dynamic inversion control of a linear scalar plant with constrained control inputs. In: Proceedings of the 2005 American Control Conference (2005)

    Google Scholar 

  75. Tandale, M.D., Valasek, J.: Fault-tolerant structured adaptive model inversion control. J. Guid. Control Dyn. 29, 635–642 (2006)

    Article  Google Scholar 

  76. Tucker, T.: Touchdown: The Development of Propulsion Controlled Aircraft at Nasa Dryden. Monographs in Aerospace History, vol. 16 (1999)

    Google Scholar 

  77. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    MATH  Google Scholar 

  78. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report TR 95-041, University of North Carolina, 2006

    Google Scholar 

  79. Wu, F.: A generalized LPV system analysis and control synthesis framework. Int. J. Control 74, 745–759 (2001)

    Article  MATH  Google Scholar 

  80. Yang, Z., Blanke, M., Verhaegen, M.: Robust control mixer method for reconfigurable control design using model matching. IET Control Theory Appl. 1, 349–357 (2007)

    Article  MathSciNet  Google Scholar 

  81. Zhang, Y., Jiang, J.: Integrated active fault-tolerant control using IMM approach. IEEE Trans. Aerosp. Electron. Syst. 37, 1221–1235 (2001)

    Article  Google Scholar 

  82. Zhang, Y., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39, 838–848 (2003)

    Article  Google Scholar 

  83. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)

    Article  Google Scholar 

  84. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halim Alwi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Alwi, H., Edwards, C., Tan, C.P. (2011). Introduction. In: Fault Detection and Fault-Tolerant Control Using Sliding Modes. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-650-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-650-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-649-8

  • Online ISBN: 978-0-85729-650-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics