Skip to main content

Abstract

State Dependent Parameter (SDP) modelling has been developed by Professor Peter Young in the 1990s to identify non-linearities in the context of dynamic transfer function models. SDP is a very efficient approach and it is based on recursive filtering and Fixed Interval Smoothing (FIS) algorithms. It has been applied successfully in many applications, especially to identify Data-Based Mechanistic models from observed time series data in environmental sciences. In this paper we highlight the role played by the SDP ideas, namely in the simplified State-Dependent Regression (SDR) form, in the context of sensitivity analysis and meta-modelling. Fruitful joint co-operation with Peter Young has led to a series of papers, where SDR has been applied to perform sensitivity analysis, to reduce model’s complexity and to build meta-models (or emulators) capable to reproduce the main features of large simulation models. Finally, we will describe how SDR algorithms can be effectively used in the context of the identification and estimation of tensor product smoothing splines ANOVA models, improving their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DACE is a Matlab toolbox used to construct a kriging approximation models on the basis of data coming from computer experiments (see [3]).

References

  1. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison of alternative approaches. Risk Anal. 26, 1349–1361 (2006)

    Article  Google Scholar 

  2. Borgonovo, E.: A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92, 771–784 (2007)

    Article  Google Scholar 

  3. Lophaven, S., Nielsen, H., Sondergaard, J.: DACE a Matlab kriging toolbox, version 2.0. Technical Report IMM-TR-2002-12, Informatics and Mathematical Modelling, Technical University of Denmark (2002). http://www.immm.dtu.dk/~hbn/dace

  4. Gu, C.: Smoothing Spline ANOVA Models. Springer, Berlin (2002)

    MATH  Google Scholar 

  5. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. D 82, 35–45 (1960)

    Google Scholar 

  6. Lin, Y., Zhang, H.: Component selection and smoothing in smoothing spline analysis of variance models. Ann. Stat. 34, 2272–2297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ng, C., Young, P.C.: Recursive estimation and forecasting of non-stationary time series. J. Forecast. 9, 173–204 (1990)

    Article  Google Scholar 

  8. Priestley, M.B.: Nonlinear and Nonstationary Time Series Analysis. Academic Press, New York (1988)

    Google Scholar 

  9. Ratto, M., Pagano, A., Young, P.C.: Non-parametric estimation of conditional moments for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 237–243 (2009)

    Article  Google Scholar 

  10. Ratto, M., Pagano, A.: Using recursive algorithms for the efficient identification of smoothing spline ANOVA models. AStA Adv. Stat. Anal. 94(4), 367–388 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ratto, M., Pagano, A., Young, P.C.: State dependent parameter metamodelling and sensitivity analysis. Comput. Phys. Commun. 177, 863–876 (2007)

    Article  Google Scholar 

  12. Sadeghi, J., Tych, W., Chotai, A., Young, P.C.: Multi-state dependent parameter model identification and estimation for nonlinear dynamic systems. Electron. Lett. 46(18), 1265–1266 (2011)

    Article  Google Scholar 

  13. Saltelli, A., Chan, K., Scott, M. (eds.): Sensitivity Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  14. Storlie, C., Bondell, H., Reich, B., Zhang, H.: Surface estimation, variable selection, and the nonparametric oracle property. Stat. Sin. 21(2), 679–705 (2011)

    Article  MATH  Google Scholar 

  15. Schweppe, F.: Evaluation of likelihood functions for Gaussian signals. IEEE Trans. Inf. Theory 11, 61–70 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics (1990)

    Book  MATH  Google Scholar 

  18. Wecker, W.E., Ansley, C.F.: The signal extraction approach to non linear regression and spline smoothing. J. Am. Stat. Assoc. 78, 81–89 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weinert, H., Byrd, R., Sidhu, G.: A stochastic framework for recursive computation of spline functions: Part II, smoothing splines. J. Optim. Theory Appl. 30, 255–268 (1983)

    Article  MathSciNet  Google Scholar 

  20. Young, P.C.: Time variable and state dependent modelling of nonstationary and nonlinear time series. In: Rao, T.S. (ed.) Developments in Time Series Analysis, pp. 374–413. Chapman and Hall, London (1993)

    Google Scholar 

  21. Young, P.C.: Data-based mechanistic modeling of environmental, ecological, economic and engineering systems. Environ. Model. Softw. 13, 105–122 (1998)

    Article  Google Scholar 

  22. Young, P.C.: Nonstationary time series analysis and forecasting. Progr. Environ. Sci. 1, 3–48 (1999)

    Google Scholar 

  23. Young, P.C.: Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation. In: Fitzgerald, W.J., Smith, R.L., Walden, A.T., Young, P.C. (eds.) Nonlinear and Nonstationary Signal Processing, pp. 74–114. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Young, P.C.: The identification and estimation of nonlinear stochastic systems. In: Mees, F.A.I. (ed.) Nonlinear Dynamics and Statistics. Birkhäuser, Boston (2001)

    Google Scholar 

  25. Young, P.C.: Data-based mechanistic modelling: natural philosophy revisited? (in this book)

    Google Scholar 

  26. Young, P.C., McKenna, P., Bruun, J.: The identification and estimation of nonlinear stochastic systems. Int. J. Control 74, 1837–1857 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young, P.C., Pedregal, D.J.: Recursive fixed interval smoothing and the evaluation of Lidar measurements. Environmetrics 7, 417–427 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ratto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ratto, M., Pagano, A. (2012). State Dependent Regressions: From Sensitivity Analysis to Meta-modeling. In: Wang, L., Garnier, H. (eds) System Identification, Environmental Modelling, and Control System Design. Springer, London. https://doi.org/10.1007/978-0-85729-974-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-974-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-973-4

  • Online ISBN: 978-0-85729-974-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics