Skip to main content

Part of the book series: Macmillan Engineering Evaluations ((MECS))

  • 108 Accesses

Abstract

Gallium phosphide is a semiconductor of the III–V type, with the same type of crystal structure as silicon, but with gallium and phosphorus atoms on adjacent sites. Because of its detailed band structure, which is characterised by an indirect band-gap, it is quite different electrically from gallium arsenide, and offers none of the advantages of this material in the high frequency devices discussed in the previous chapter. However, the one important feature is the large band-gap, 2.26 eV at room temperature. This energy is within the range of energies of photons visible to the human eye, 1.77 eV to 3.10 eV, corresponding to the wavelength range 7 000Å to 4 000Å. In consequence, it is possible for the emission of light to result from electron transitions within the material. This fact, coupled with the ability to make p-n junctions, has made GaP the object of much research since Wolff first reported electroluminescence in 1954 (1), in a point contact device in poly crystalline material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G A Wolff, P H Keck and J B Broder, Phys Rev 94, 253 (1954).

    Article  Google Scholar 

  2. D Richman, JAppl Phys 24, 1131 (1963).

    Google Scholar 

  3. G Giesecke and H Pfister, Acta Cryst 11, 369 (1958).

    Article  Google Scholar 

  4. E D Pierron, D L Parker and J B McNeeley, JAppl Phys 38, 4469 (1967).

    Google Scholar 

  5. E F Steigmeier and I Kudman, Phys Rev 141, 767 (1966).

    Article  Google Scholar 

  6. See Ref (38).

    Google Scholar 

  7. D A Kleinman and W G Spitzer, Phys Rev 118, 110, 1960.

    Article  Google Scholar 

  8. G A Wolff, L toman, N I Field and J C Clark ‘Halbleiter und Phosphore’ p 463, Wiley (Interscience) NY 1958.

    Google Scholar 

  9. R C Taylor, JElectrochem Soc 116, 383 (1969).

    Article  Google Scholar 

  10. R H Saul, J Electrochem Soc 115, 1184 (1968).

    Article  Google Scholar 

  11. S J Bass and P E Oliver, J Crystal Growth, 3, 286 (1968).

    Article  Google Scholar 

  12. T S Plaskett, J Electrochem Soc 116, 1723 (1969).

    Article  Google Scholar 

  13. S E Blum and R J Chicotka, J Electrochem Soc 115, 298 (1968).

    Google Scholar 

  14. L C Luther, Metall Trans, 1, 593 (1970).

    Article  Google Scholar 

  15. H Rodot, A Hruby and M Schneider, J Crystal Growth, 3, 4, 305 (1968).

    Google Scholar 

  16. J Starkiewicz and J W Allen, J Phys Chem Solids, 23, 881 (1962).

    Article  Google Scholar 

  17. M R Lorenz and M Pilkuhn, JAppl Phys 37, 4049 (1966).

    Google Scholar 

  18. K K Shih, J M Woodhall, S E Blum and L M Foster, JAppl Phys 39, 2962 (1968).

    Article  Google Scholar 

  19. G R Antell and D Effer, J Electrochem Soc 106, 509 (1959).

    Article  Google Scholar 

  20. R Nicklin. Private Communication.

    Google Scholar 

  21. C J Frosch, J Electrochem Soc 111, 180 (1964).

    Article  Google Scholar 

  22. R H Saul, J Electrochem Soc 115, 1184 (1968).

    Article  Google Scholar 

  23. F A Trumbore, Paper No 75, ECS Conference, Los Angeles, May 1970.

    Google Scholar 

  24. S F Nygren and G L Pearson, J Electrochem Soc 116, 649 (1969).

    Article  Google Scholar 

  25. Private communication. R Nicklin, Allen Clark Research Centre, The Plessey Company Limited.

    Google Scholar 

  26. J W Allen and R J Cherry, J Phys Chem Solids, 4, 155 (1958).

    Article  Google Scholar 

  27. W G Spitzer and W Allred; S E Blum and R J Chicotka, JAppl Phys, 40, 2589 (1969).

    Article  Google Scholar 

  28. R Zallen and W Paul, Phys Rev 134, A1628, 1964.

    Article  Google Scholar 

  29. M B Panish and H C Casey, JAppl Phys 40, 163 (1969).

    Article  Google Scholar 

  30. A L Edwards, J Phys Chem Solids, 11, 140 (1959).

    Article  Google Scholar 

  31. M, Gershenzon, ‘Semiconductors and Semimetals’, Vol 2, p 305 (Ed Willardson and Beer ), Academic Press, NY and London (1966).

    Google Scholar 

  32. R A Logan and A G Chynoweth, J Appl Phys 33, 1649 (1964).

    Article  Google Scholar 

  33. R A Logan and H F White and R M Mikulyak, Appl Phys Letts, 5, 41, 1964.

    Article  Google Scholar 

  34. R Nicklin, A W Russell and P C Newman, Electr Lett 3, 363, 1967.

    Article  Google Scholar 

  35. F Ermanis, H C Casey and K Wolfstirn, J Appl Phys 39, 4856 (1968).

    Article  Google Scholar 

  36. W G Spitzer, M Gershenzon, C J Frosch and D F Gibbs, J Phys Chem Solids 11, 339 (1959).

    Article  Google Scholar 

  37. S D Lacey, Solid State Co Communications, 8, 1115 (1970).

    Article  Google Scholar 

  38. B O Seraphim and H E Bennett, ‘Semiconductors and Semimetals’, Volume 3, (Ed Willardson and Beer ), Academic Press, NY and London 1967.

    Google Scholar 

  39. W G Spitzer, W Allred, S E Blum and R J Chicotka, J Appl Phys 40, 2589 (1969).

    Article  Google Scholar 

  40. See ref 16.

    Google Scholar 

  41. See D G Thomas, Brit J Appl Phys (J Phys D) Ser 2, 2, 637 (1969) for a review.

    Google Scholar 

  42. A Onton and M R Lorenz, Appl Phys Letts 12, 115 (1968).

    Article  Google Scholar 

  43. R A Logan, H G White and W Weigman. Appl Phys Letts 13, 139 (1968).

    Article  Google Scholar 

  44. R A Faulkner, Phys Rev 175, 991 (1968).

    Article  Google Scholar 

  45. L M Foster and J Scardfield, JElectrochem Soc 116, 495 (1969).

    Google Scholar 

  46. M R Lorenz and G D Pettit, J Appl Phys 38, 3983 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William F. Waller AMITPP AssIRefEng

Copyright information

© 1971 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Hart, P.B. (1971). Gallium Phosphide. In: Waller, W.F. (eds) Electronics Design Materials. Macmillan Engineering Evaluations. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-01176-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-01176-6_16

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-01178-0

  • Online ISBN: 978-1-349-01176-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics