Skip to main content

Microscopic Aspects of Entropy and the Statistical Foundations of Nonequilibrium Thermodynamics

  • Chapter
Foundations of Continuum Thermodynamics
  • 129 Accesses

Abstract

The aim of this paper is to show how recent work in nonequilibrium statistical mechanics leads to a mechanical interpretation of the second law of thermodynamics.

First, we recall Boltzmann’s definition of entropy and the difficulties associated with it (extension to dense systems, Loschmidt’s paradox, etc.). On a simple model (McKean—Kac’s model), we show that Boltzmann’s definition is certainly not valid for all possible evolutions but that it is, nevertheless, possible to find out a Liapounoff function which is positive and can only decrease as a result of the time evolution. This leads to a microscopic definition of entropy for this model. The entropy defined in this way reduces to Boltzmann’s entropy close to equilibrium.

We then give a short summary of the work in nonequilibrium statistical mechanics of the Brussels school and emphasise the fact that irreversibility appears as a symmetry breaking of the time reversal invariance which results from the appearance of dynamic operators which are even in the Liouville—von Neumann operator L. This symmetry breaking is a consequence of causality when applied to large systems formed by many interacting degrees of freedom. The introduction of nonunitary (called star unitary) transformation leads to a representation in which the time change of the distribution function is split into two parts, one odd and one even in the Liouville—von Neumann operators. The first corresponds to reversible changes, the second to irreversible ones. The correspondence with the second law is therefore complete. We may now introduce a Liapounoff function which leads to a general microscopic model of entropy. This definition is valid whatever the initial conditions. No additional probabilistic arguments are needed to derive the increase of entropy. On the contrary the probabilistic interpretation when valid is a consequence of dynamics. We also show that there is no Loschmidt paradox associated with our new definition of entropy, and that it reduces to Boltzmann’s definition for systems close to equilibrium.

In the concluding section we stress the fact that our approach leads to a general expression for the entropy production independently of any assumption of closeness to equilibrium. The perspectives opened by this new development which unifies dynamics and thermodynamics are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Prigogine. Physica, 15 (1949), 272

    Article  Google Scholar 

  2. I. Prigogine, C. George, F. Henin and L. Rosenfeld. Chemica Scripta, 4 (1973), 5

    Google Scholar 

  3. I. Prigogine. The Development of the Physicist’s Conception of Nature in the Twentieth Century, ed. by J. Mehra, Reidel, Dordrecht-Holland (1973), p. 697, 561

    Google Scholar 

  4. I. Prigogine. Proceedings of the International Symposium 100 Years Boltzmann Equation, ed. by E. G. D. Cohen and W. Thirring, Acta Physica Austriaca, Suppl. X, Springer Verlag (1973), p. 401

    Google Scholar 

  5. I. Prigogine. Irreversibility as a symmetry breaking process. Nature (1973), 246, 67–71

    Article  Google Scholar 

  6. M. Planck. Vorlesungen über Thermodynamik, Berlin and Leipzig, Walter de Gruyter (1930), p. 83

    Google Scholar 

  7. P. Glansdorff and I. Prigogine. Structure, Stability and Fluctuations, Wiley-Interscience (1971)

    Google Scholar 

  8. L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Wien Ber., 66 (1872), 275. See Wissenschaftliche Abhandlungen, Verlag von Johann Ambrosius Barth, Leipzig, 1 (1909)

    Google Scholar 

  9. L. Boltzmann. Der zweite hauptsatz der mechanische wärmetheorie. In Populäre Schriften, Verlag von Johan Ambrosius Barth, Leipzig (1919), p. 25

    Google Scholar 

  10. J. O. Hirschfelder, C. F. Curtiss and R. B. Bird. The Molecular Theory of Gases and Liquids, Wiley, New York (1959)

    Google Scholar 

  11. B. J. Alder and T. E. Wainwright. J. Chem. Phys., 33 (1960), 1434

    Article  Google Scholar 

  12. A. Bellemans and J. Orban. Phys. Lett., 24A (1967), 620

    Google Scholar 

  13. J. Loschmidt. Wien Ber., 73 (1876), 139

    Google Scholar 

  14. P. and T. Ehrenfest. Begriffliche grundlagender statistischen auffasung der mechanik. Encycl. Math. Wissenschafter, 4 (1911), 4

    Google Scholar 

  15. M. Kac. Foundations of kinetic theory. Proc. Third Berkeley Symp. on Math. Stat. and Prob., vol. III (1956), 171

    Google Scholar 

  16. M. Kac. Probability and Related Topics in Physical Sciences, Interscience, New York (1959)

    Google Scholar 

  17. H. P. MacKean Jr. J. of Comb. Theory, 2 (1967), 358

    Article  Google Scholar 

  18. M. Kac. Some probabilistic aspects of the Boltzmann equation. Proc. of the International Symposium 100 Years Boltzmann Equation, Acta Physica Austriaca, Supp. X, Springer Verlag (1973), 379

    Book  Google Scholar 

  19. F. Herrin and I. Prigogine, P.N.A.S., to appear 1974; F. Henin, Physica, to appear 1974; F. Henin, Ac. Roy. Belg., Bull. Cl. Sc. to appear 1974

    Google Scholar 

  20. C. George, I. Prigogine and L. Rosenfeld. Koningl. Dansk. Vid. Mat-fys. Medd., 38 (1972), 12

    Google Scholar 

  21. I. Prigogine, Non Equilibrium Statistical Mechanics, Wiley-Interscience, New York (1962)

    Google Scholar 

  22. C. George, Physica, 65 (1973), 277

    Article  Google Scholar 

  23. M. Baus. Acad. Roy. Belg. Bull. Cl. Sc., 53 (1967), 1291, 1332, 1352

    Google Scholar 

  24. L. Lanz and L. A. Lugiato. Physica, 44 (1969), 532

    Article  Google Scholar 

  25. A. Grecos. Physica, 51 (1970), 50

    Article  Google Scholar 

  26. I. Prigogine and P. Résibois. Atti del Simposio Lagrangiano, Academia delle Scienze, Torino (1964)

    Google Scholar 

  27. R. Balescu. Physica, 36 (1967), 433

    Article  Google Scholar 

  28. F. Mayné and I. Prigogine. Physica, 63 (1973), 1

    Article  Google Scholar 

  29. M. Baus. Thesis, Free University of Brussels (1968)

    Google Scholar 

  30. M. de Haan and F. Henin. Physica, 67 (1973), 197

    Article  Google Scholar 

  31. G. Stey. Physica, 68 (1973), 273

    Google Scholar 

  32. G. Nicolis, J. Wallenborn and M. G. Velarde. Physica, 43 (1969), 263

    Article  Google Scholar 

  33. I. Prigogine, C. George, A. Grecos. P.N.A.S. to appear 1974

    Google Scholar 

  34. A. Grecos and I. Prigogine. Physica, 59 (1972), 77

    Article  Google Scholar 

  35. A. Grecos and I. Prigogine. P.N.A.S., 69 (1972), 1629

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1973 Instituto de Alta Cultura-Núcleo de Estudos de Engenharia Mecanica

About this chapter

Cite this chapter

Prigoginet, I. (1973). Microscopic Aspects of Entropy and the Statistical Foundations of Nonequilibrium Thermodynamics. In: Domingos, J.J.D., Nina, M.N.R., Whitelaw, J.H. (eds) Foundations of Continuum Thermodynamics. Palgrave, London. https://doi.org/10.1007/978-1-349-02235-9_5

Download citation

Publish with us

Policies and ethics