Skip to main content

Some characteristics of mineralised collagen

  • Chapter
Calcified Tissue

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

According to Albert Szent-Gyorgyi, ‘Discovery consists of looking at the same thing as everyone else and thinking something different.’ The ideas and suggestions presented in this chapter do not quite satisfy Szent-Gyorgyi’s paradigm, since some new facts were added to the older data. However, the previously available information should have sufficed for an acute observer. It is well known that the type I collagen in bone differs from that in soft tissue. For example, the collagen in bone cannot be split by collagenase until the tissue is demineralised. Also, the collagen in bone requires a much higher temperature to gelatinise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelder, L. S., Sullivan, C. E., Jelinski, L. W. and Torchia, D. A. (1982). Characterization of leucine side-chain reorientation in collagen fibrils by solid-state 2H NMR. Proc. Natl Acad. Sci. USA, 79, 386–9

    Google Scholar 

  • Bonar, L. C. and Glimcher, M. J. (1970). Thermal denaturation of mineralized and demineralized bone collagens. J. Ultrastruct. Res., 32, 545–51

    Google Scholar 

  • Bonar, L. C., Lees, S. and Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J. Molec. Biol., 181, 265–70

    Google Scholar 

  • Brady, G. W., Satkowski, M., Foos, D. and Benheim, C. J. (1986). Environmental influences on DNA superhelicity. Ionic strength and temperature effects on superhelix conformation in solution. In Biomolecular Stereodynamics, Vol. IV (eds R. H. Sarma and M. H. Sarma), Adenine Press, Guilderland

    Google Scholar 

  • Broek, D. L., Eikenberry, E. F., Rietzek, P. P. and Brodsky, B. (1981). Collagen structure in tendon and bone. In The Chemistry and Biology of Mineralized Connective Tissue (ed. A. Veis), Elsevier, New York, pp. 79–84

    Google Scholar 

  • Cohen-Solal, L., Lian, J. B., Kossiva, D. and Glimcher, M. J. (1979a). Identification of organic phosphorus and O-phosphothreonine in non-collageneous proteins and their absence from phosphorylated collagen. Biochem. J., 177, 81–98

    Google Scholar 

  • Cohen-Solal, L., Cohen-Solal, M. and Glimcher, M. J. (1979b). Identification of gamma-glutamyl phosphate in the alpha2 chains of chicken bone collagen. Proc. Natl Acad. Sci. USA, 76, 4327–30

    Google Scholar 

  • Cohen-Solal, L., Maroteaux, P. and Glimcher, M. J. (1981). Presence of gamma-glutamyl phosphate in the collagens of bone and other calcified tissues and its absence in the collagens of unmineralized tissues. In The Chemistry and Biology of Mineralized Connective Tissues (ed. A. Veis), Elsevier North Holland, New York, pp. 7–11

    Google Scholar 

  • Cowdry, E. V. (1952). Laboratory Technique in Biology and Medicine, Williams and Wilkins, Baltimore

    Google Scholar 

  • Cusack, S. and Miller, A. (1979). Determination of the elastic constants of collagen by Brillouin light scattering. J. Molec. Biol., 135, 39–51

    Google Scholar 

  • Eyre, D. R., Paz, M. A. and Gallop, P. A. (1984). Cross linking in collagen and elastin. Ann. Rev. Biochem., 53, 717–48

    Google Scholar 

  • Flandin, F., Buffevant, C. and Herbage, D. (1984). A differential scanning calorimetry analysis of the age related changes in the thermal stability of rat skin collagen. Biochim. Biophys. Acta, 791, 205–11

    Google Scholar 

  • Fleisher, J. H., Spear, D., Brendel, K. and Chvapil, M. (1979). Effect of pargyline on the

    Google Scholar 

  • metabolism of BAPN by rabbits. Toxicol Appl. Pharmacol., 47, 61–9

    Google Scholar 

  • Folkhard, W., Knorzer, E., Mosler, E. and Nemetschek, T. (1984). Packing of collagen molecules modified with 2-propanol. J. Molec. Biol., 177, 841–4

    Google Scholar 

  • Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. R. Soc. Lond. B, 304, 479–508

    Google Scholar 

  • Glimcher, M. J., Friberg, U. A., Orloff, S. and Gross, J. (1966). The role of the inorganic crystals in the stability characteristics of collagen in lathyritic bone. J. Ultrastruct. Res., 15, 74–86

    Google Scholar 

  • Heersche, J. N. M. (1978). Mechanisms of osteoclastic bone resorption: a new hypothesis. Calcif. Tissue Res., 26, 81–4

    Google Scholar 

  • Herbage, D., Borsali, F., Buffevant, Ch., Flandin, F. and Aguercif, M. (1982). Composition, cross-linking and thermal stability of bone and skin collagens in patients with osteogenesis imperfecta. Metab. Bone Dis. Rel. Res., 4, 95–101

    Google Scholar 

  • Jelinski, L. W., Sullivan, C. E. and Torchia, D. A. (1980). 2H NMR study of molecular motion in collagen fibrils. Nature, 284, 531–4

    Google Scholar 

  • Lees, S. (1981). A mixed packing model for bone collagen. Calcif. Tiss. Int., 33, 591–602

    Google Scholar 

  • Lees, S. (1986). Water content in Type I collagen tissues calculated from the generalized packing model. Int. J. Biol. Macromol., 8, 66–72

    Google Scholar 

  • Lees, S. and Escoubes, M. (1987). Vapor pressure isotherms, composition and density of hyperdense bones of horse, whale and porpoise. Conn. Tiss. Res., 16, 281–303

    Google Scholar 

  • Lees, S., Heeley, J. D. and Cleary, P. F. (1979). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tiss. Int., 29, 107–17

    Google Scholar 

  • Lees, S., Heeley, J. D. and Cleary, P. F. (1981). Some properties of the organic matrix of a bovine cortical bone sample in various media. Calcif. Tiss. Int., 83, 83–6

    Google Scholar 

  • Lees, S., Bonar, L. C. and Mook, H. A. (1984). A study of dense mineralized tissue by neutron diffraction. Int. J. Biol. Macromol., 6, 321–6

    Google Scholar 

  • Lees, S., Barnard, S. M. and Churchill, D. (1987a). The variation of sonic plesiovelocity in dose-dependent lathyritic rabbit femurs. Ultrasound Med. Biol., 13, 19–24

    Google Scholar 

  • Lees, S., Barnard, S. M. and Mook, H. A. (1987b). Neutron studies of collagen in lathyritic bone. Int. J. Biol. Macromol., 9, 32–8

    Google Scholar 

  • Lees, S., Eyre, D. R. and Barnard, S. M. (1989). BAPN dose dependence of mature crosslinks in bone matrix collagen of rabbit compact bone: corresponding variation of several physical properties. To be published

    Google Scholar 

  • Manning, G. S. (1979). Counterion binding in polyelectrolyte theory. Acc. Chem. Res., 12, 443–9

    Google Scholar 

  • Miller, E. J. (1984). Chemistry of the Collagens. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York, p. 57

    Google Scholar 

  • Monk, C. B. (1961). Electrolytic Dissociation. Academic Press, London, p. 261

    Google Scholar 

  • Nemetschek, T., Jelenik, K., Knorzer, E., Mosler, E., Nemetschek-Gansler, H., Riedl, H. and Schilling, V. (1983a). Transformation of the structure of collagen. J. Molec. Biol., 167, 461–79

    Google Scholar 

  • Nemetschek, T., Knorzer, E., Folkhard, W., Gerken, W., Jelenik, K., Kuhleman, C., Mosler, E. and Nemetschek-Gansler, H. (1983b). Hydratwasseraustausch und alkanol-induzierte molekulare unordnungen an kollagen. Z. Naturforsch., 38c, 815–28

    Google Scholar 

  • Piez, K. A. (1984). Molecular and aggregate structures of the collagens. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York

    Google Scholar 

  • Pineri, M. H., Escoubes, M. and Roche, G. (1978). Water-collagen interactions: calorimetric and mechanical experiments. Biopolymers, 17, 2799–815

    Google Scholar 

  • Privalov, P. L. (1982). Stability of proteins: proteins which do not present a single cooperative system. In Advances in Protein Chemistry (eds C. B. Anfinsen, J. T. Edsall and F. M. Richards), Academic Press, New York, pp. 1–104

    Google Scholar 

  • Privalov, P. L. and Tiktopulo, E. I. (1970). Thermal conformational transformation of tropocollagen. I. Calorometric study. Biopolymers, 9, 127–39

    Google Scholar 

  • Ramachandran, G. N. and Ramakrishnan, C. (1976). Molecular structure. In Biochemistry of Collagen (eds G. N. Ramachandran and A. H. Reddi), Plenum Press, New York, pp. 45–84

    Google Scholar 

  • Rougvie, M. A. and Bear, R. S. (1953). An X-ray diffraction investigation of swelling by collagen. J. Am. Leather Chem. Assoc, 48, 735–51

    Google Scholar 

  • Reiser, K. M. and Last, J. A. (1986). Biosynthesis of collagen crosslinks: in vivo labelling of neonatal skin, tendon and bone in rats. Conn. Tiss. Res., 14, 293–306

    Google Scholar 

  • Sarker, S. K., Sullivan, E. S. and Torchia, D. A. (1983). Solid state 13CNMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem., 258, 9762–7

    Google Scholar 

  • Sarker, S. K., Sullivan, E. S. and Torchia, D. A. (1985). Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 NMR relaxation study. Biochem., 24, 2348–54

    Google Scholar 

  • Soumpasis, D. M. (1984). Statistical mechanics of the B-Z transition of DNA: contribution of diffuse ion interactions. Proc. Natl. Acad. Sci. USA, 81, 5116–20

    Google Scholar 

  • Soumpasis, D. M. (1986). Ionic stabilization and modulation of nucleic acid conformations in solution. In Biomolecular Stereodynamics, Vol. IV (eds R. H. Sarma and M. H. Sarma), Adenine Press, Guilderland

    Google Scholar 

  • Soumpasis, D. M., Robert-Nicoud, M. and Jovin, T. M. (1987). B-Z DNA conformational transition in 1:1 electrolytes: dependence upon counterion size. FEBS Lett., 213, 341–4

    Google Scholar 

  • Spengler, D. M., Baylink, D. J. and Rosenquist, J. B. (1977). Whole bone mechanical properties: evidence for an effect of bone matrix. J. Bone Joint Surg., 59A, 670

    Google Scholar 

  • Tang, S. S., Trackman, P. C. and Kagan, H. M. (1983). Reaction of aortic lysyl oxidase with beta-aminopropionitrile. J. Biol. Chem., 258, 4331–38

    Google Scholar 

  • Veis, A. (1984). Bones and teeth. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York, pp. 352

    Google Scholar 

  • Wooley, D. E. (1984). Mammalian collagenases. In Extracellular Matrix Biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The contributors

About this chapter

Cite this chapter

Lees, S. (1989). Some characteristics of mineralised collagen. In: Hukins, D.W.L. (eds) Calcified Tissue. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09868-2_7

Download citation

Publish with us

Policies and ethics