Skip to main content

Structural and functional studies of ribonuclease T1

  • Chapter
Protein-Nucleic Acid Interaction

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

  • 34 Accesses

Abstract

Ribonuclease (RNase) T1 represents a simple, yet most rewarding model for studying protein-nucleic acid interaction. The isolation of the enzyme from Takadiastase, a commercial preparation of the culture medium of the mould fungus Aspergillus oryzae, was first described by Sato and Egami (1957). Since then, RNase T1 has received much attention as a tool in molecular biology, notably for RNA sequencing (Donis-Keller et al., 1977; Simoncsits et al., 1911; Silberklang et al., 1979) and mapping (e.g. Epstein et al., 1981; Nohga et al., 1981; Nomoto et al., 1981; Stackebrandt et al., 1981; Stewart and Crouch, 1981). RNase T1 has also been used to catalyse the formation of phosphodiester bonds in RNA (Podder, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aphanasenko, G. A., Dudkin, S. M., Kaminir, L. B., Leshchinskaya, I. B. and Severin, E. S. (1979). Primary structure of ribonuclease from Bacillus intermedius 7P. FEBS Letters, 97, 77–80

    Article  CAS  PubMed  Google Scholar 

  • Ami, R., Heinemann, U., Maslowska, M., Tokuoka, R. and Saenger, W. (1987). Restrained least-squares refinement of the crystal structure of the ribonuclease T1*2′-guanylic acid complex at 1.9 Ã… resolution. Acta Cryst., B43, 548–554

    Google Scholar 

  • Arni, R., Heinemann, U., Tokuoka, R. and Saenger, W. (1988). Three-dimensional structure of the ribonuclease T1*2′GMP complex at 1.9 Ã… resolution. J. Biol. Chem., 263, 15358–15368

    CAS  PubMed  Google Scholar 

  • Bezborodova, S. I., Khodova, O. M. and Stepanov, V. M. (1983). The complete amino acid sequence of ribonuclease C2 from Aspergillus clavatus. FEBS Letters, 159, 256–258

    Article  CAS  Google Scholar 

  • Blackburn, P. and Moore, S. (1982). Pancreatic ribonuclease. The Enzymes, 15, 317–433

    Article  CAS  Google Scholar 

  • Chen, L. X-Q., Longworth, J. W. and Fleming, G. R. (1987). Picosecond time-resolved fluorescence of ribonuclease T1. Biophys. J., 51, 865–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donis-Keller, H., Maxam, A. M. and Gilbert, W. (1977). Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res., 4, 2527–2538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckstein, F., Schulz, H. H., Rüterjans, H., Haar, W. and Maurer, W. (1972). Stereochemistry of the transesterification step of ribonuclease T1. Biochemistry, 11, 3507–3512

    Article  CAS  PubMed  Google Scholar 

  • Eftink, M. R. and Ghiron, C. A. (1975). Dynamics of a protein matrix revealed by fluorescence quenching. Proc. Natl Acad. Sci. USA, 72, 3290–3294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eftink, M. R. (1983). Quenching resolved fluorescence anisotropy studies with single and multi-tryptophan containing proteins. Biophys. J., 43, 323–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eftink, M. R. and Ghiron, C.A. (1987). Frequency domain measurements of the fluorescence lifetime of ribonuclease T1. Biophys. J., 52, 467–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egami, F., Oshima, T. and Uchida, T. (1980). Specific interaction of base-specific nucleases with nucleosides and nucleotides. Mol. Biol. Biochem. Biophys., 32, 250–277

    CAS  Google Scholar 

  • Epstein, P., Reddy, R. and Busch, H. (1981). Site-specific cleavage by T1 RNase of U-1 RNA in U-1 ribonucleoprotein particles. Proc. Natl Acad. Sci. USA, 78, 1562–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finzel, B. C. (1987). Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein structures. J. Appl. Cryst., 20, 53–55

    Article  CAS  Google Scholar 

  • Fukunaga, Y., Tamaoki, H., Sakiyama, F. and Narita, K. (1982). The role of the single tryptophane residue in the structure and function of ribonuclease T1. J. Biochem., 92, 143–153

    CAS  PubMed  Google Scholar 

  • Fukunaga, Y. and Sakiyama, F. (1982). Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1. J. Biochem., 92, 155–161

    CAS  PubMed  Google Scholar 

  • Hartley, R. W. and Barker, E. A. (1972). Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nature New Biol., 235, 15–16

    Article  CAS  PubMed  Google Scholar 

  • Hartley, R. W. (1980). Homology between prokaryotic and eukaryotic ribonucleases. J. Mol. Evol., 15, 355–358

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U., Wernitz, M., Pähler, A., Saenger, W., Menke, G. and Rüterjans, H. (1980). Crystallization of a complex between ribonuclease T1 and 2′-guanylic acid. Eur. J. Biochem., 109, 109–114

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U. (1982). Dreidimensionale Strukturen des Calotropin DI und des Komplexes aus Ribonuclease T1 und Guanosin-2′-monophosphat. Thesis, University of Göttingen

    Google Scholar 

  • Heinemann, U. and Saenger, W. (1982). Specific protein-nucleic acid recognition in ribonuclease T1-2′-guanylic acid complex: an X-ray study. Nature, 299, 27–31

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U. and Saenger, W. (1983). Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. J. Biomol. Struct. Dyn., 1, 523–538

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson, W. A. (1985). Stereochemically restrained refinement of macromolecular structures. Methods Enzymol., 115, 252–270

    Article  CAS  PubMed  Google Scholar 

  • Hershberger, M. V., Maki, A. H. and Galley, W. C. (1980). Phosphorescence and optically detected magnetic resonance studies of a class of anomalous tryptophan residues in globular proteins. Biochemistry, 19, 2204–2209

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Dodson, G., Heinemann, U., Saenger, W., Mitsui, Y., Nakamura, K., Borisov, S., Tischenko, G., Polyakov, K. and Pavlovsky, S. (1983). The structural and sequence homology of a family of microbial ribonucleases. Trends Biochem. Sci., 8, 364–369

    Article  CAS  Google Scholar 

  • Hirabayashi, J. and Yoshida, H. (1983). The primary structure of ribonuclease Fl from Fusarium moniliforme. Biochem. Internat., 7, 255–262

    CAS  Google Scholar 

  • Ikehara, M., Ohtsuka, E., Tokunaga, T. et al. (1986). Inquiries into the structure-function relationship of ribonuclease T1 using chemically synthesized coding sequences. Proc. Natl Acad. Sci. USA, 83, 4695–4699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikehara, M., Ohtsuka, E., Tokunaga, T. et al. (1987). Synthesis and properties of ribonuclease T1 and its mutants. In Bruzik, K. S. and Stec, W. J. (eds), Biophosphates and Their Analogues — Synthesis, Structure, Metabolism and Activity, Elsevier, Amsterdam, 335–344

    Google Scholar 

  • Imakubo, K. and Kai, Y. (1977). Phosphorescence of ribonuclease T1 in solution at 293 K. J. Phys. Soc. Japan, 42, 1431–1432

    Article  CAS  Google Scholar 

  • Inagaki, F., Kawano, Y., Shimada, I., Takahashi, K. and Miyazawa, T. (1981). Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. J. Biochem., 89, 1185–1195

    CAS  PubMed  Google Scholar 

  • Inagaki, F., Shimada, I. and Miyazawa, T. (1985). Binding modes of inhibitors to ribonuclease T1 as studied by nuclear magnetic resonance. Biochemistry, 24, 1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Inagaki, F. and Shimada, I. (1986). Hexacyanochromate ion as a paramagnetic anion probe for active sites of enzymes. J. Inorg. Biochem., 28, 311–317

    Article  CAS  PubMed  Google Scholar 

  • James, D. R., Demmer, D. R., Steer, R. P. and Verall, R. E. (1985). Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. Biochemistry, 24, 5517–5526

    Article  CAS  PubMed  Google Scholar 

  • Jones, T. A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Cryst., 11, 268–272

    Article  CAS  Google Scholar 

  • Kanaya, S. and Uchida, T. (1986). Comparison of primary structures of ribonuclease U2 isoforms. Biochem. J., 240, 163–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khorana, H. G., Agarwal, K. L., Büchi, H., Caruthers, M. H., Gupta, N. K., Kleppe, K., Kumar, A., Ohtsuka, E., Raj Bhandary, U. L., van de Sande, J. H., Sgaramella, V., Terao, T., Weber, H. and Yamada, T. (1972). Studies on polynucleotides. CIII. Total synthesis of the transfer ribonucleic acid from yeast. J. Mol. Biol., 72, 209–217

    Article  CAS  PubMed  Google Scholar 

  • Kyogoku, Y., Watanabe, M., Kainosho, M. and Oshima, T. (1982). A 15N-NMR study on ribonuclease T1-guanylic acid complex. J. Biochem., 91, 675–679

    CAS  PubMed  Google Scholar 

  • Lakowicz, J. R., Maliwal, B. P., Cherek, H. and Balter, A. (1983). Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry, 22, 1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Lang, K., Schmid, F. X. and Fischer, G. (1987). Catalysis of protein folding by prolyl isomerase. Nature, 329, 268–270

    Article  CAS  PubMed  Google Scholar 

  • Lesk, A. M. and Hardman, K. D. (1982). Computer-generated schematic diagrams of protein structures. Science, 216, 539–540

    Article  CAS  PubMed  Google Scholar 

  • Longworth, J. W. (1968). Excited state interactions in macromolecules. Photochem. Photo-biol., 7, 587–596

    Article  CAS  Google Scholar 

  • MacKerell, A. D., Rigler, R., Hahn, U. and Saenger, W. (1987a). Ribonuclease T1: Interaction with 2′GMP and 3′GMP as studied by time-resolved fluorescence spectroscopy. In Ehrenberg, A., Rigler, R., Gräslund, A. and Nilsson, L. (eds), Structure Dynamics and Function of Biomolecules, Springer, Berlin, Heidelberg, 260–265

    Chapter  Google Scholar 

  • MacKerell, A. D., Jr, Rigler, R., Nilsson, L., Hahn, U. and Saenger, W. (1987b). A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1. Biophys. Chem., 26, 247–261

    Article  CAS  PubMed  Google Scholar 

  • Martin, P. D., Tulinsky, A. and Walz, F. G., Jr (1980). Crystallization of ribonuclease T1. J. Mol. Biol., 136, 95–97

    Article  CAS  PubMed  Google Scholar 

  • Maslowska, M. (1988). Thesis, Free University of Berlin

    Google Scholar 

  • Mauguen, Y., Hartley, R. W., Dodson, E. J., Dodson, G. G., Bricogne, G., Chothia, C. and Jack, A. (1982). Molecular structure of a new family of ribonucleases. Nature, 297, 162–164

    Article  CAS  PubMed  Google Scholar 

  • Nagai, H., Kawata, Y., Hayashi, F., Sakiyama, F. and Kyogoku, Y. (1985). An exposed tyrosine residue of RNase T1 and its involvement in the interaction with guanylic acid. FEBS Letters, 189, 167–170

    Article  CAS  Google Scholar 

  • Nakamura, K. T., Iwahashi, K., Yamamoto, Y., Iitaka, Y., Yoshida, N. and Mitsui, Y. (1982). Crystal structure of a microbial ribonuclease, RNase St. Nature, 299, 564–566

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, S., Morioka, H., Fuchimura, K., Tanaka, T., Uesugi, S., Ohtsuka, E. and Ikehara, M. (1986). Modification of Glu58, an amino acid of the active center of ribonuclease T1, to Gln and Asp. Biochem. Biophys. Res. Commun., 138, 789–794

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, S., Morioka, H., Kim, H. J., Fuchimura, K., Tanaka, T., Uesugi, S., Hako-shima, T., Tomita, K., Ohtsuka, E. and Ikehara, M. (1987). Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A. Biochemistry, 26, 8620–8624

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa, S., Kimura, T., Morioka, H., Uesugi, S., Hakoshima, T., Tomita, K., Ohtsuka, E. and Ikehara, M. (1988). Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base. Biochem. Biophys. Res. Commun., 150, 68–74

    Article  CAS  PubMed  Google Scholar 

  • Nohga, K., Reddy, R. and Busch, H. (1981). Comparison of RNase T1 fingerprints of U1, U2, and U3 small nuclear RNA′s of HeLa cells, human normal fibroblasts, and Novikoff hepatoma cells. Cancer Res., 41, 2215–2220

    CAS  PubMed  Google Scholar 

  • Nomoto, A., Kitamura, N., Lee, J. J., Rothberg, P. G., Imura, N. and Wimmer, E. (1981). Identification of point mutations in the genome of the polio virus sabin vaccine LSc 2ab, and catalogue of RNase T1- and RNase A-resistant oligonucleotides of poliovirus type 1 (Mahoney) RNA. Virology, 112, 217–227

    Article  CAS  PubMed  Google Scholar 

  • Oobatake, M., Takahashi, S. and Ooi, T. (1979a). Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts. J. Biochem., 86, 55–63

    CAS  PubMed  Google Scholar 

  • Oobatake, M., Takahashi, S. and Ooi, T. (1979b). Conformational stability of ribonuclease T1. II. Salt-induced renaturation. J. Biochem., 86, 65–70

    CAS  PubMed  Google Scholar 

  • Osterman, H. L. and Walz, F. G., Jr (1978). Subsites and catalytic mechanism of ribonuclease T1: kinetic studies using GpA, GpC, GpG, and GpU as substrates. Biochemistry, 17, 4124–4130

    Article  CAS  PubMed  Google Scholar 

  • Osterman, H. L. and Walz, F. G., Jr (1979). Subsite interactions and ribonuclease T1 catalysis: kinetic studies with ApGpC and ApGpU. Biochemistry, 18, 1984–1988

    Article  CAS  PubMed  Google Scholar 

  • Pace, C. N. and Barrett, A. J. (1984). Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem. J., 219, 411–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pace, C. N. and Creighton, T. E. (1986). The disulphide folding pathway of ribonuclease T1. J. Mol. Biol., 188, 477–486

    Article  CAS  PubMed  Google Scholar 

  • Pace, C. N. and Grimsley, G. R. (1988). Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry, 21, 3242–3246

    Article  Google Scholar 

  • Pavlovsky, A. G., Borisova, S. B., Strokopytov, B. V., Sanishvili, R. G., Vagin, A. A. and Chepurnova, N. K. (1987). Structure bases for nucleotide recognition by guanyl-specific ribonucleases. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 81–96

    Google Scholar 

  • Pavlovsky, A. G., Vagin, A. A., Vainstein, N. K., Chepurnova, N. K. and Karpeisky, M. Y. (1983). Three-dimensional structure of ribonuclease from Bacillus intermedius 7P at 3.2 Ã… resolution. FEBS Letters, 162, 167–170

    Article  CAS  PubMed  Google Scholar 

  • Podder, S. K. (1970). Synthetic action of ribonuclease T1. Biochim. Biophys. Acta, 209, 455–462

    Article  CAS  PubMed  Google Scholar 

  • Polyakov, K. M., Vagin, A. A., Tishchenko, G. N. and Bezborodova, S. I. (1984). X-ray structural studies of ribonuclease C2 from Aspergillus clavatus and its complex with 2′-GMP. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 5, Slovak Academy of Sciences, Bratislava, 131–138

    Google Scholar 

  • Polyakov, K. M., Strokopytov, B. V., Vagin, A. A., Bezborodova, S. I. and Orna, L. (1987a). Three-dimensional structure of RNase C2 from Aspergillus clavatus at 1.35 Ã… resolution. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 335–340

    Google Scholar 

  • Polyakov, K. M., Strokopytov, B. V., Vagin, A. A., Bezborodova, S. I. and Shlyapnikov, S. V. (1987b). Crystallization and preliminary X-ray structural studies of RNase Thl from Trichoderma harzianum. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 331–334

    Google Scholar 

  • Pongs, O. (1970). Influences of pH and substrate analogs on ribonuclease T1 fluorescence. Biochemistry, 9, 2316–2321

    Article  CAS  PubMed  Google Scholar 

  • Ouaas, R., Choe, H-W., Hahn, U., McKeown, Y., Stanssens, P., Zabeau, M., Frank, R. and Blöcker, H. (1987). Protein design — a tool for understanding enzyme action: chemical synthesis of a gene for ribonuclease T1. In Bruzik, K. S. and Stec, W. J. (eds), Biophosphates and Their Analogues — Synthesis, Structure, Metabolism and Activity, Elsevier, Amsterdam, 345–348

    Google Scholar 

  • Ouaas, R., McKeown, Y., Stanssens, P., Frank, R., Blöcker, H. and Hahn, U. (1988a). Expression of the chemically synthesized gene for ribonuclease T1 in Escherichia coli using a secretion cloning vector. Eur. J. Biochem., 173, 617–622

    Article  Google Scholar 

  • Quaas, R., Grunert, H.-P., Kimura, M. and Hahn, U. (1988b). Expression of ribonuclease T1 in Escherichia coli and rapid purification of the enzyme. Nucleosides & Nucleotides, in press

    Google Scholar 

  • Richards, F. M. and Wyckoff, H. W. (1971). Bovine pancreatic ribonuclease. The Enzymes, 4, 647–806

    Article  CAS  Google Scholar 

  • Röterjans, H., Hoffmann, E., Schmidt, J. and Simon, J. (1987). Two-dimensional 1H-NMR investigation of ribonuclease T1 and the complexes of RNase T1 with 2′- and 3′-guanosine monophosphate. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 81–96

    Google Scholar 

  • Sacco, G., Drickamer, K. and Wool, I. G. (1983). The primary structure of the cytotoxin α-sarcin. J. Biol. Chem., 258, 5811–5818

    CAS  PubMed  Google Scholar 

  • Saenger, W. (1984). Principles of Nucleic Acid Structure, Springer, New York, 76–78

    Book  Google Scholar 

  • Sato, K. and Egami, F. (1957). Studies on ribonucleases in Takadiastase. J. Biochem., 44, 753–767

    CAS  Google Scholar 

  • Sato, S. and Uchida, T. (1975). The amino acid sequence of ribonuclease U2 from Ustilago sphaerogena. Biochem. J., 145, 353–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sevcik, J., Dodson, E. J., Dodson, G. G. and Zelinka, J. (1987). The X-ray analysis of ribonuclease Sa. In Zelinka, J. and Balan, J. (eds), Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations, vol. 6, Slovak Academy of Sciences, Bratislava, 33–45

    Google Scholar 

  • Shlyapnikov, S. V., Kulikov, V. A. and Yakovlev, G. I. (1984). Amino acid sequence and S-S bonds of Penicillium brevicompactum guanyl-specific ribonuclease. FEBS Letters, 177, 246–248

    Article  CAS  PubMed  Google Scholar 

  • Shlyapnikov, S. V., Bezborodova, S. I., Kulikov, V. A. and Yakovlev, G. I. (1986a). Express analysis of protein amino acid sequences. Primary structure of Penicillium chrysogenum 152A guanyl-specific ribonuclease. FEBS Letters, 196, 29–33

    Article  CAS  PubMed  Google Scholar 

  • Shlyapnikov, S. V., Both, V., Kulikov, V. A., Dementiev, A. A., Sevcik, J. and Zelinka, J. (1986b). Amino acid sequence determination of guanyl-specific ribonuclease Sa from Streptomyces aureofaciens. FEBS Letters, 209, 335–339

    Article  CAS  PubMed  Google Scholar 

  • Silberklang, M., Gillum, A. M. and Raj Bhandary, U. L. (1979). Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol., 59, 58–109

    Article  CAS  PubMed  Google Scholar 

  • Simoncsits, A., Brownlee, G. G., Brown, R. S., Rubin, J. R. and Guilley, H. (1977). New rapid gel sequencing method for RNA. Nature, 269, 833–836

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E., Ludwig, W., Schleifer, K-H. and Gross, H. J. (1981). Rapid cataloguing of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J. Mol. Evol., 17, 227–236

    Article  CAS  PubMed  Google Scholar 

  • Stewart, M. L. and Crouch, R. J. (1981). Sensitive and rapid analysis of T1-ribonuclease-resistant oligonucleotides in two-dimensional fingerprinting gels of poliovirus type I genomic RNA. Analyt. Biochem., 111, 203–211

    Article  CAS  PubMed  Google Scholar 

  • Sugio, S., Amisaki, T., Ohishi, H., Tomita, K-I., Heinemann, U. and Saenger, W. (1985a). pH-induced change in nucleotide binding geometry in the ribonuclease T1-2′-guanylic acid complex. FEBS Letters, 181, 129–132

    Article  CAS  Google Scholar 

  • Sugio, S., Oka, K-I., Ohishi, H., Tomita, K-I, and Saenger, W. (1985b). Three-dimensional structure of the ribonuclease T1*3′-guanylic acid complex at 2.6 Ã… resolution. FEBS Letters, 183, 115–118

    Article  CAS  PubMed  Google Scholar 

  • Sugio, S., Amisaki, T., Ohishi, H. and Tomita, K.-I. (1988). Refined X-ray structure of the low pH form of ribonuclease T1-2′-guanylic acid complex at 1.9 Ã… resolution. J. Biochem., 103, 354–366

    CAS  PubMed  Google Scholar 

  • Takahashi, K. (1970). The structure and function of ribonuclease T1. IX. Photooxidation of ribonuclease T1 in the presence of Rose Bengal. J. Biochem., 67, 833–839

    CAS  PubMed  Google Scholar 

  • Takahashi, K. (1971). The structure and function of ribonuclease T1. XV. Amino acid sequence of chymotryptic peptides from performic acid-oxidized and heat-denatured ribonuclease T1 — the complete amino acid sequence of ribonuclease T1. J. Biochem., 70, 617–634

    CAS  PubMed  Google Scholar 

  • Takahashi, K. (1974). Effects of temperature, salts, and solvents on the enzymatic activity of ribonuclease T1. J. Biochem., 75, 201–204

    CAS  PubMed  Google Scholar 

  • Takahashi, K. and Moore, S. (1982). Ribonuclease T1. The Enzymes, 15, 435–468

    Article  CAS  Google Scholar 

  • Takahashi, K. (1985). A revision and confirmation of the amino acid sequence of ribonuclease T1. J. Biochem., 98, 815–817

    CAS  PubMed  Google Scholar 

  • Takahashi, K. and Hashimoto, J. (1988). The amino acid sequence of ribonuclease U1, a guanine-specific ribonuclease from the fungus Ustilago sphaerogena. J. Biochem., 103, 313–320

    CAS  PubMed  Google Scholar 

  • Uchida, T. and Egami, F. (1971). Microbial ribonucleases with special reference to RNase T1, T2, N1, and U2. The Enzymes, 4, 205–250

    Article  CAS  Google Scholar 

  • Usher, D. A. (1969). On the mechanism of ribonuclease action. Proc. Natl Acad. Sci. USA, 62, 661–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walz, F. G., Jr, Osterman, H. L. and Libertin, C. (1979). Base-group specificity and the primary recognition site of ribonuclease T1 for minimal RNA substrates. Arch. Biochem. Biophys., 195, 95–102

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, H., Ohgi, K. and Irie, M. (1982). Primary structure of a minor ribonuclease from Aspergillus saitoi. J. Biochem., 91, 1495–1509

    CAS  PubMed  Google Scholar 

  • Watanabe, H., Ando, E., Ohgi, K. and Irie, M. (1985). The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligo-inosinic acids and poly I. J. Biochem., 98, 1239–1245

    CAS  PubMed  Google Scholar 

  • White, M. D., Rapoport, S. and Lapidot, Y. (1977). Guanylyl 2′–5′ guanosine as an inhibitor of ribonuclease T1. Biochem. Biophys. Res. Commun., 77, 1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Whitfeld, P. R. and Witzel, H. (1963). On the mechanism of action of Takadiastase ribonuclease T1. Biochim. Biophys. Acta, 11, 338–341

    Article  Google Scholar 

  • Wlodawer, A. (1985). Structure of bovine pancreatic ribonuclease by X-ray and neutron diffraction. In Jurnak, F. A. and McPherson, A. (eds), Biological Macromolecules & Assemblies, Vol. 2, Nucleic Acids and Interactive Proteins, Wiley, New York, 393–439

    Google Scholar 

  • Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids, Wiley, New York

    Google Scholar 

  • Yamagata, S., Takahashi, K. and Egami, F. (1962). The structure and function of ribonuclease T1. VI. Reduction of disulfide bonds of ribonuclease T1. J. Biochem., 52, 272–274

    CAS  Google Scholar 

  • Yoshida, N., Sasaki, A., Rashid, M. A. and Otsuka, H. (1976). The amino acid sequence of ribonuclease St. FEBS Letters, 64, 122–125

    Article  CAS  PubMed  Google Scholar 

  • Zabinsky, M. and Walz, F. G., Jr (1976). Subsites and catalytic mechanism of ribonuclease T1: Kinetic studies using GpC and GpU as substrates. Arch. Biochem. Biophys., 175, 558–564

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The Contributors

About this chapter

Cite this chapter

Heinemann, U., Hahn, U. (1989). Structural and functional studies of ribonuclease T1. In: Saenger, W., Heinemann, U. (eds) Protein-Nucleic Acid Interaction. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-09871-2_6

Download citation

Publish with us

Policies and ethics