Skip to main content

Chemical Control of Botrytis and its Resistance to Chemical Fungicides

  • Chapter
Botrytis: Biology, Pathology and Control

The chemical control of Botrytis spp., and especially B. cinerea the causal agent of grey mould on many crops, can be achieved by several families of fungicides. Among those affecting fungal respiration, the oldest ones are multi-site toxicants (e.g. dichlofluanid, thiram); newer ones are uncouplers (e.g. fluazinam), inhibitors of mitochondrial complex II (e.g. boscalid) or complex III (e.g. strobilurins). Within anti-microtubule botryticides, negative-cross resistance can occur between benzimidazoles (e.g. carbendazim) and phenylcarbamates (e.g. diethofencarb), a phenomenon determined by a mutation in the gene encoding ??-tubulin. Aromatic hydrocarbon fungicides (e.g. dicloran), dicarboximides (e.g. iprodione, procymidone, vinclozolin) and phenylpyrroles (e.g. fludioxonil) affect the fungal content of polyols and resistance to these various compounds can be associated with mutations in a protein histidine kinase, probably involved in osmoregulation. However, dicarboximide-resistant field strains of B. cinerea are sensitive to phenylpyrroles. Anilinopyrimidines (e.g. cyprodinil, mepanipyrim, pyrimethanil) inhibit methionine biosynthesis but their primary target site remains unknown. In few situations, resistance of commercial significance has been recorded. Among sterol biosynthesis inhibitors those inhibiting 14??- demethylase (DMIs) which are widely used against many fungal diseases are of limited interest against Botrytis spp., whereas the hydroxyanilide fenhexamid, which inhibits the 3-keto reductase involved in sterol C4-demethylations, is a powerful botryticide. Monitoring conducted in French vineyards revealed the presence of multi-drug resistant (MDR) strains, a phenomenon probably determined by overproduction of ATP-binding cassette transporters. Resistance towards fungicides of the different groups is described throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  • Albertini C and Leroux P (2004) A Botrytis cinerea putative3-keto reductase gene that is homologous to mammalian 17E-hydroxysteroid dehydrogenase type 7 gene. European Journal of Plant Pathology 110: 723-733

    CAS  Google Scholar 

  • Albertini C, Thébaud C, Fournier E and Leroux P (2003) Eburicol 14D-demethylase gene (CYP51) polymorphism and speciation of Botrytis cinerea. Mycological Research 106: 1171-1178

    Google Scholar 

  • Anonymous (1988) Fungicide resistance: definitions and use of terms. EPPO Bulletin 18: 569-574

    Google Scholar 

  • Aravind L and Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiology Letters 176: 111-116

    CAS  PubMed  Google Scholar 

  • Balzi E and Goffeau A (1994) Genetics and biochemistry of yeast multidrug resistance. Biochimica et Biophysica Acta 1187: 152-162

    CAS  PubMed  Google Scholar 

  • Barak E and Edgington LV (1984) Glutathione synthesis in response to captan: a possible mechanism for resistance of Botrytis cinerea to the fungicide. Pesticide Biochemistry and Physiology 21: 412-416

    CAS  Google Scholar 

  • Baroffio CA, Siegfried W and Hilber VW (2003) Long-term monitoring for resistance of Botryotinia fuckeliana to anilinopyrimidine, phenylpyrrole and hydroxyanilide fungicides in Switzerland. Plant Disease 87: 662-666

    CAS  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M and Parr-Dobrzanski B (2002) The strobilurin fungicides. Pesticide Management Science 58: 659-662

    Article  CAS  Google Scholar 

  • Birchmore RJ and Forster B (1996) FRAC methods for monitoring the sensitivity of Botrytis cinerea to anilinopyrimidine fungicides. EPPO Bulletin 26: 181-197

    Google Scholar 

  • Bollen GJ and Scholten G (1971) Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Netherlands Journal of Plant Pathology 77: 83-90

    CAS  Google Scholar 

  • Broomfield PLE and Hargreaves J (1992) A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Current Genetic 22: 117-121

    CAS  Google Scholar 

  • Cabral SM and Cabral JP (2000) The primary mode of action of vinclozolin: are oxygen free radicals directly involved? Pesticide Biochemistry and Physiology 66: 145-152

    CAS  Google Scholar 

  • Chapeland F, Fritz R and Leroux P (1999). Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea. Pesticide Biochemistry and Physiology 64: 85- 100

    CAS  Google Scholar 

  • Corbett JR, Wright K and Baillie AC (1984) The Biochemical Mode of Action of Pesticides - 2nd Edition. Academic Press, London, UK

    Google Scholar 

  • Couteux A and Lejeune V (2003) Index phytosanitaire Acta 2003 - 38è edition. ACTA, Paris

    Google Scholar 

  • France Cui W, Beever RE, Parkes SL, Weeds PL and Templeton MD (2002) An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana. Fungal Genetics and Biology 36: 187-198

    Google Scholar 

  • Dacol L, Gibbard M, Hodson MO and Knight S (1998) Azoxystrobin: development on horticultural crops in Europe. Brighton Crop Protection Conference. Pests and Diseases pp. 843-848

    Google Scholar 

  • Davidse LC and Ishii H (1995) Biochemical and molecular aspects of the mechanisms of action of benzimidazoles, N-phenylcarbamates and N-phenylformamidoximes and the mechanisims of resistance to these compounds in fungi. In: Lyr H (ed.) Modern Selective Fungicides. (pp. 305-322) Gustav Fisher Verlag, Jena, Germany

    Google Scholar 

  • Debieu D, Bach J, Hugon M, Malosse C and Leroux P (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pesticide Management Science 57: 1060-1067

    CAS  Google Scholar 

  • Del Sorbo G (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genetics and Biology 30: 1-15

    CAS  PubMed  Google Scholar 

  • Delen N, Yildiz M and Maraite H (1984) Benzimidazole and dithiocarbamate resistance of Botrytis cinerea on greenhouse crops in Turkey. Medelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 49: 153-161

    CAS  Google Scholar 

  • Delp CJ (1995) Benzimidazole and related fungicides. In: Lyr H (ed.) Modern Selective Fungicides. (pp. 291-303) Gustav Fisher Verlag, Jena, Germany

    Google Scholar 

  • Edlich W and Lyr H (1992) Target sites of fungicides with primary effects on lipid peroxidation. In: Köller W (ed.) Target Sites of Fungicides Action. (pp. 53-68) CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Elad Y (1992) Reduced sensitivity of Botrytis cinerea to two sterol-biosynthesis inhibiting fungicides: fenetrazole and fenethanil. Plant Pathology 41: 47-54

    CAS  Google Scholar 

  • Faretra F and Pollastro S (1991) Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research 95: 943-951

    CAS  Google Scholar 

  • Faretra F and Pollastro S (1993) Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana from nine countries. Plant Pathology 42: 48-57

    CAS  Google Scholar 

  • Forster B and Staub T (1996) Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Protection 15: 529-537

    CAS  Google Scholar 

  • Fournier E, Levis C, Fortini D, Leroux P, Giraud T and Brygoo Y (2003) Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus and its use as a population marker. Mycologia 95: 251-261

    CAS  Google Scholar 

  • Fritz R, Lanen C and Drouhot V (1993) Effects of various inhibitors including carboxin on Botrytis cinerea mitochondria isolated from mycelium. Agronomie 14: 541-554

    Google Scholar 

  • Fritz R, Lanen C, Chapeland-Leclerc F and Leroux P (2003) Effect of the anilinopyrimidine fungicide pyrimethanil on the cystathionine E-lyase of Botrytis cinerea. Pesticide Biochemistry and Physiology 77: 54-65

    CAS  Google Scholar 

  • Fritz R, Lanen C, Colas V and Leroux P (1997) Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pesticide Science 49: 40-46

    CAS  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K and Yamaguchi I (2000a) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. Japan Pesticide Science 25: 31-36

    CAS  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K and Yamaguchi I (2000b) Fungicide resistance and osmotic stress sensitivity in Os mutants of Neurospora crassa. Pesticide Biochemistry and Physiology 67: 125-133

    CAS  Google Scholar 

  • Fujimura M, Ochiai N, Oshima M, Motoyama T, Ichiishi A, Usami R, Horikoshi K and Yamaguchi I (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Bioscience Biotechnology and Biochemistry 67: 186-191

    CAS  Google Scholar 

  • Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, Lobuglio K and Brygoo Y (1999) Two sibling species of the Botrytis cinerea complex transposa and vacuma are found in sympatry on numerous host plants. Phytopathology 89: 967-973

    CAS  PubMed  Google Scholar 

  • Gisi U, Sierotzki H, Cook A and McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science 58: 859-867

    CAS  PubMed  Google Scholar 

  • Gouot JM (1988) Characteristics and population dynamics of Botrytis cinerea and other pathogen resistant to dicarboximide. In: Delp CJ (ed.) Fungicide Resistance in North America. (pp. 53-57) American Phytopathological Society Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Griffiths RG, Dancer J, O’Neill E and Harwood JL (2003) Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytologist 160: 199-207

    CAS  Google Scholar 

  • Gullino ML and Garibaldi A (1982) Use of mixtures or alternation of fungicides with the aim of reducing the risk of appearance of strains of Botrytis cinerea resistant to dicarboximides. EPPO Bulletin 12: 151-156

    CAS  Google Scholar 

  • Gullino ML and Kuijpers LAM (1994) Social and political implications of managing plant diseases with restricted fungicides in Europe. Annual Review of Phytopathology 32: 559-579

    CAS  PubMed  Google Scholar 

  • Hayashi K, Schoonbeek HJ, Sugiura H and De Waard MA (2001) Multidrug resistance in Botrytis cinerea with decreased accumulation of the azole fungicide oxoconazole and increased transcription of the ABC transporter gene BcatrD. Pesticide Biochemistry and Physiology 70: 168-179

    CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, Sugiura H and De Waard MA (2002a) Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitors. Pesticide Biochemistry and Physiology 73: 110-121

    CAS  Google Scholar 

  • Hayashi K, Schoonbeek HJ, Sugiura H and De Waard MA (2002b) Bcmfs1 a novel major facilitor superfamily transporter from Botrytis cinerea provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Applied and Environmental Microbiology 68: 4996-5004

    CAS  Google Scholar 

  • Hilber VW and Hilber-Bodmer M (1998) Genetic basis and monitoring of resistance of Botryotinia fuckeliana to anilinopyrimidines. Plant Disease 82: 496-500

    CAS  Google Scholar 

  • Kalamarakis AE, Petsikos-Paragiotarou N, Mavroides B and Ziogas BN (2000) Activity of fluazinam against strains of Botrytis cinerea resistant to benzimidazoles and/or dicarboximides and to a benzimidazole-phenylcarbamate mixture. Journal of Phytopathology 148: 449-455

    CAS  Google Scholar 

  • Katan T (1982) Resistance to 3,5-dichlorophenyl-N-cyclicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea on protected crops. Plant Pathology 31: 133-141

    CAS  Google Scholar 

  • Katan T and Ovadia S (1985) Effect of chlorothalonil on resistance of Botrytis cinerea to dicarboximides in cucumber glasshouses. EPPO Bulletin 15: 365-369

    Google Scholar 

  • Katan T, Elad Y and Yunis H (1989) Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathology 38: 86-92

    CAS  Google Scholar 

  • Koenraadt H and Jones AL (1992) The use of allele-specific oligonucleotide probes to characterize resistance to benomyl in field strains of Venturia inaequalis. Phytopathology 82: 1354-1358

    Google Scholar 

  • Kulka M and von Schmeling B (1995) Carboxin fungicides and related compounds. In: Lyr H (ed.) Modern Selective Fungicides. (pp. 133-147) Gustav Fisher Verlag, Jena, Germany

    Google Scholar 

  • Latorre BA, Spadaro I and Rioja ME (2002) Occurrence of resistant strains of Botrytis cinerea to aminopyrimidine fungicides in table grapes in Chile. Crop Protection 21: 957-961

    CAS  Google Scholar 

  • Leroux P (1994) Influence du pH, d’acides aminés et de diverses substances organiques sur la fongitoxicité du pyriméthanil, du glufosinate, du captafol, du cymoxanil et du fenpiclonil vis-à-vis de certaines souches de Botrytis cinerea. Agronomie 14: 541-554

    Google Scholar 

  • Leroux P (1995) Progress and problems in the control of Botrytis cinerea in grapevine. Pesticide Outlook, October 1995, pp. 13-19

    Google Scholar 

  • Leroux P (1996) Recent developments in the mode of action of fungicides. Pesticide Science 47: 191-197

    CAS  Google Scholar 

  • Leroux P and Clerjeau M (1985) Resistance of Botrytis cinerea and Plasmopara viticola to fungicides in French vineyards. Crop Protection 4: 137-160

    CAS  Google Scholar 

  • Leroux P and Fritz R (1984) Antifungal activity of dicarboximides and aromatic hydrocarbons and resistance to these fungicides. In: Trinci APJ and Ryley JF (eds) Mode of Action of Antifungal Agents. (pp. 207-237) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Leroux P, Chapeland F, Desbrosses D and Gredt M (1999) Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection 18: 687-697

    CAS  Google Scholar 

  • Leroux P, Fournier E, Brygoo Y and Panon ML (2002b) Biodiversité et variabilité chez Botrytis cinerea, l’agent de la pourriture grise. Phytoma 554: 38-42

    Google Scholar 

  • Leroux P, Fritz R and Despreaux D (1987) The mode of action of cymoxanil in Botrytis cinerea. In Greenhalgh R and Roberts TR (eds) Pesticide Science and Biotechnology.(pp.191-196) Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M and Chapeland F (2002a) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science 58: 876-888

    CAS  Google Scholar 

  • Leroux P, Gredt M, Arnold A and Bernard T (1997) Etude de la sensibilité de Botrytis cinerea, l'agent de la pourriture grise, vis à vis du fluazinam. In: 5th International Conference on Plant Diseases ANPP, Paris, France, pp. 501-507

    Google Scholar 

  • Leroux P, Lanen C and Fritz R (1992) Similarities in the antifungal activities of fenpiclonil, iprodione and tolclofos-methyl against Botrytis cinerea and Fusarium nivale. Pesticide Science 36: 325-329

    Google Scholar 

  • Leroux P, Walker AS and Senechal Y (2003) Etude de la sensibilité de Botrytis cinerea au boscalid. In: 7th International Conference on Plant Diseases(cdROM; www.afpp.net). AFPP, Paris, France

  • Lorbeer JW and Vincelli PC (1990) Efficacy of dicarboximide fungicides and fungicide combinations for control of Botrytis leaf blight of union in New York. Plant Disease 74: 235-237

    CAS  Google Scholar 

  • Lorenz G (1988) Dicarboximide fungicides: history of resistance development and monitoring methods. In Delp CJ (ed.) Fungicide Resistance in North America. (pp. 45-51). American Phytopathological Society Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Lorenz G, Becker R and Schelberger K (1994) Strategies to control dicarboximide-resistant Botrytis strains in grapes. In Heaney S, Slawson D, Hollomon DW, Smith M, Russel PE and Parry DW (eds) Fungicide Resistance. (pp. 225-232) BCPC monograph 60, British Crop Protection Council, Farnham, UK

    Google Scholar 

  • Luck JE and Gillings MR (1995) Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycological Research 99: 1483-1488

    CAS  Google Scholar 

  • Malathrakis NE (1989) Resistance of Botrytis cinerea to dichlofluanid in greenhouse vegetables. Plant Disease 73: 138-141

    CAS  Google Scholar 

  • Masner P, Muster P and Schmid J (1994) Possible methionine biosynthesis inhibition by pyrimidinamine fungicides in Botrytis cinerea. Pesticide Science 42: 163-166

    CAS  Google Scholar 

  • Miller T, Renault S and Selitrennikoff CP (2002) Molecular dissection of alleles of the osmotic-1 locus of Neurospora crassa. Fungal Genetics and Biology 35: 147-155

    CAS  PubMed  Google Scholar 

  • Milling RJ and Richardson CJ (1995). Mode of action of the anilinopyrimidine fungicide pyrimethanil. Effects on enzyme excretion in Botrytis cinerea. Pesticide Science 45: 43-48

    CAS  Google Scholar 

  • Miura I, Kamakura T, Maeno S, Hayashi S and Yamaguchi I (1994) Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pesticide Biochemistry and Physiology 48: 222-228

    Google Scholar 

  • Nakajima M, Suzuki J, Hosaka T, Hibi T and Akutsu K (2001) Functional analysis of an ATP-binding cassette transporter gene in Botrytis cinerea by gene disruption. Journal of General Plant Pathology 67: 212-214

    CAS  Google Scholar 

  • Nakazawa Y and Yamada M (1997) Chemical control of grey mould in Japan. A history of combating resistance. Agrochemicals Japan 71: 2-6

    CAS  Google Scholar 

  • Ochiai N, Fujimura M, Motoyama J, Ichiishi A, Usami R, Horikoshi K and Yamaguchi I (2001) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pesticide Management Science 57: 437-442

    CAS  Google Scholar 

  • Oshima M, Fujimura M, Bannos S, Hashimoto C, Motoyama T, Ichiishi A and Yagamushi I (2002) A point mutation in the two component histidine kinase BcoS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92: 75-80

    CAS  PubMed  Google Scholar 

  • Pak HA, Beever RE and Laracy EP (1990) Population dynamics of dicarboximide-resistant strains of Botrytis cinerea on grapevine in New Zealand. Plant Pathology 39: 501-509

    CAS  Google Scholar 

  • Palmer CL, Horst KF and Langbans RW (1997) Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Disease 81: 1432-1438

    Google Scholar 

  • Petsikos-Panayotarou N, Markellou E and Kalamarakis AE (2003) In vitro and in vivo activity of cyprodinil and pyrimethanil on Botrytis cinerea resistant to other botryticides and selection of resistance to pyrimethanil in a greenhouse population in Greece. European Journal of Plant Pathology 109: 173-182

    CAS  Google Scholar 

  • Pillonel C and Meyer T (1997) Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pesticide Science 49: 229-236

    CAS  Google Scholar 

  • Pollastro S, Faretra F, Di Canio V and De Guido A (1996) Characterization and genetic analysis of field isolates of Botryotinia fuckeliana (Botrytis cinerea) resistant to dichlofluanid. European Journal of Plant Pathology 102: 607-613

    Google Scholar 

  • Pommer EH and Lorenz G (1995) Dicarboximide fungicides. In: Lyr H (ed.) Modern Selective Fungicides - 2nd Edition. (pp. 99-118).Gustav Fisher Verlag, Jena, Germany

    Google Scholar 

  • Prins TW, Wagemakers L, Schouten A and Van Kan JAL (2000) Cloning and characterization of a glutathione s-transferase homologue from the plant pathogenic fungus Botrytis cinerea. Molecular Plant Pathology 1: 169-178

    CAS  PubMed  Google Scholar 

  • Radice S, Ferraris M, Marabini L, Grand S and Chiesara E (2001) Effect of iprodione, a dicarboximide fungicide, on primary cultured rainbow trout hepatocytes. Aquatic Toxicology 54: 51-58

    CAS  PubMed  Google Scholar 

  • Ramesh MA, Laidlaw RD, Dürrenberger F, Orth AB and Kronstad W. (2001) The cAMP signal transduction pathway mediates resistance to dicarboximides and aromatic hydrocarbon fungicides in Ustilago maydis. Fungal Genetics and Biology 32: 183-193

    CAS  PubMed  Google Scholar 

  • Raposo R, Gomez V, Urrutia T and Melgarejo P (2000) Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90: 1246-1249

    CAS  PubMed  Google Scholar 

  • Rewal N, Coley-Smith JR and Sealy-Lewis HM (1991) Studies on resistance to dichlofluanid and other fungicides in Botrytis cinerea. Plant Pathology 40: 554-560

    CAS  Google Scholar 

  • Roberts TR, Hutson DH, Jewess PJ, Lec PW, Nicholls PH and Plimmer JR (1999) Metabolic Pathways of Agrochemicals - Part 2: Insecticides and Fungicides. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Rosslenbroich H-J and Stuebler D (2000) Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Protection 19: 557-561

    CAS  Google Scholar 

  • Schoonbeek H, Del Sorbo G and De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions 14: 562-571

    CAS  PubMed  Google Scholar 

  • Shtienberg D and Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87: 332-340

    CAS  PubMed  Google Scholar 

  • Sierotzki H and Gisi U (2003) Molecular diagnostics for fungicide resistance in plant pathogens. In: Voss G and Ramos G (eds) Chemistry of Crop Protection. (pp. 71-88) Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Sierotzki H, Wullschleger J, Alt M, Bruyère T, Pillonel C, Parisi S and Gisi U (2002) Potential mode of resistance to anilinopyrimidine fungicides. In: Dehne HW, Gisi U, Juck KH, Russel PE and Lyr H (eds) Modern Fungicides and Antifungal Compounds III. (pp. 141-148) Agro Concept GmbH, Bonn, Germany

    Google Scholar 

  • Slawecki RA, Ryan EP and Young DH (2002) Novel fungitoxic assays for inhibition of germination associated adhesion of Botrytis cinerea and Puccinia recondita spores. Applied and Environmental Microbiology 68: 597-601

    CAS  PubMed  Google Scholar 

  • Smith CM (1988) History of benzimidazole use and resistance. In: Delp CJ (ed.) Fungicide Resistance in North America. (pp. 23-24) American Phytopathological Society Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Stehmann C (1995) Biological activity of triazole fungicides towards Botrytis cinerea. Ph.D. Thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Stergiopoulos I, Suviers LH and De Waard MA (2002) Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitor superfamily. European Journal of Plant Pathology 108: 719-734

    CAS  Google Scholar 

  • Suty A, Pontzen R and Stenzel K (1999) Fenhexamid-sensitivity of Botrytis cinerea: determination of baseline sensitivity and assessment of the risk of resistance. Pflanzenschutz-Nachrichten Bayer 52: 145-157

    Google Scholar 

  • Tamura O (2000) Resistance development of grey mould on beans towards fluazinam and relevant countermeasures. In: Abstract of the 10th Symposium of Research Committee of Fungicides Resistance, The Phytopathological Society of Japan, April 5, 2000, Okayama, Japan, pp. 7-16

    Google Scholar 

  • Tamura H, Mizutani A, Yukioka H, Miki N, Ohba K and Masuko M (1999) Effect of the methoxyiminoacetamide fungicide, SSF 129, on respiratory activity in Botrytis cinerea. Pesticide Science 55: 681-686

    CAS  Google Scholar 

  • Tellier F, Fritz R, Leroux P, Carlin-Sinclair A and Cherton JC (2002) Metabolism of cymoxanil and analogs in strains of the fungus Botrytis cinerea using high-performance liquid chromatography and ion-pair high performance thin layer chromatography. Journal of Chromatography B 769: 35-46

    CAS  Google Scholar 

  • Terada M, Mizuhashi F, Tomita T and Murata K (1998) Effects of mepanipyrim on lipid metabolism in rats. The Journal of Toxicological Sciences 23: 235-241

    CAS  PubMed  Google Scholar 

  • Terry LA and Joyce DC (2000) Suppression of grey mould on strawberry fruit with chemical plant activator acibenzolar. Pesticide Management Science 56: 989-992

    CAS  Google Scholar 

  • Tremblay DM, Talbot BG and Carisse O (2003) Sensitivity of Botrytis squamosa to different classes of fungicides. Plant Disease 87: 573-578

    CAS  Google Scholar 

  • Vermeulen T, Schoonbeek H and De Waard M (2001) The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pesticide Management Science 57: 393-402

    CAS  Google Scholar 

  • Vignutelli A, Hilber-Bodmer M and Hilber UW (2002) Genetic analysis of resistance to the phenylpyrrole fludioxonil and the dicarboximide vinclozolin in Botryotinia fuckeliana. Mycological Research 106: 329-335

    CAS  Google Scholar 

  • White GA and Georgopoulos SG (1992) Target sites of carboxamides. In: Köller W (ed.) Target Sites of Fungicide Action. (pp. 1-29) CRC Press, Boca Raton, USA

    Google Scholar 

  • Wood PM and Hollomon DH (2003) A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. Pest Management Science 59: 499-511

    CAS  PubMed  Google Scholar 

  • Wurms KV, Long PG, Sharrock KR and Greenwood DR (1999) The potential for resistance to Botrytis cinerea by kiwifruit. Crop Protection 18: 427-435

    Google Scholar 

  • Yarden O and Katan T (1993) Mutations leading to substitutions at amino-acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83: 1478-1483

    CAS  Google Scholar 

  • Yoder OC and Turgeon BG (2001) Fungal genomics and Pathology. Current Opinion in Plant Biology 4: 315-321

    CAS  PubMed  Google Scholar 

  • Yourman LF, Jeffers SN and Den RA (2001) Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide fungicides. Phytopathology 91: 307-315

    CAS  PubMed  Google Scholar 

  • Yunis H, Elad Y and Mahrer Y (1991) Influence of fungicide control of cucumber and tomato grey mould (Botrytis cinerea) on fruit yield. Pesticide Science 31: 325-335

    CAS  Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S and Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa Os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Applied and Environmental Microbiology 68: 532-538

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Leroux, P. (2007). Chemical Control of Botrytis and its Resistance to Chemical Fungicides. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N. (eds) Botrytis: Biology, Pathology and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2626-3_12

Download citation

Publish with us

Policies and ethics