Skip to main content

Synthesis, Export and Partitioning of the End Products of Photosynthesis

  • Chapter
The Structure and Function of Plastids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

Chloroplasts are the metabolic factories of plant cells. They are the site of various biosynthetic pathways such as carbon, nitrogen and sulfur assimilation, fatty acid biosynthesis, amino acid biosynthesis, isoprenoid biosynthesis and secondary metabolite biosynthesis, to mention just a few. Many of these metabolic pathways require the rapid and controlled exchange of precursors, intermediates and end products between the chloroplast stroma and the surrounding cytosol. However, two lipid bilayer membranes, the inner and outer chloroplast envelope membranes, form a permeation barrier between plastid stroma and the cytosol. Transporters in the inner plastid envelope membrane catalyze the efficient and specific exchange of metabolites between plastid stroma and other cellular compartments, thereby integrating plastidal metabolism into the metabolic networks in plant cells. Metabolite transporters not only catalyze the flux of metabolites between compartments, they also represent information pathways that communicate the metabolic status between compartments. A classic example is the coordination of sucrose biosynthesis in the cytosol with starch biosynthesis in the stroma by the triosephosphate/phosphate translocator (Flügge, 1995; Flügge, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki N, Ohnishi J and Kanai R (1992) Two different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants-a comparative study. Plant Cell Physiol 33: 805-809

    Google Scholar 

  • Bagge P and Larsson C (1986) Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts— Compartmentation and regulation of the reactions. Physiol Plant 68: 641-647

    Google Scholar 

  • Bauwe H and Kolukisaoglu U (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54: 1523-1535

    PubMed  Google Scholar 

  • Beck E (1985) The degradation of transitory starch in chloro-plasts. In: Heath RL and Preiss J (eds) Regulation of Carbon Partitioning in Photosynthetic Tissue, pp 27-44. Waverly, Bal-timore, MD

    Google Scholar 

  • Blennow A, Engelsen SB, Nielsen TH, Baunsgaard L and Mikkelsen R (2002) Starch phosphorylation: a new front line in starch research. Trends Plant Sci 7: 445-450

    PubMed  Google Scholar 

  • Boos W and Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Mi-crobiol Mol Biol Rev 62: 204-229

    Google Scholar 

  • Borchert S, Harborth J, Schunemann D, Hoferichter P and Heldt HW (1993) Studies of the enzymic capacities and trans-port properties of pea root plastids. Plant Physiol 101: 303-312

    PubMed  Google Scholar 

  • Bowes G and Ogren WL (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 247: 2171-2176

    PubMed  Google Scholar 

  • Bowes G, Ogren WL and Hageman RH (1971) Phosphoglyco-late production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45: 716-722

    PubMed  Google Scholar 

  • Butowt R, Granot D and Rodriguez-Garcia MI (2003) A putative plastidal glucose translocator is expressed in heterotrophic tis-sues that do not contain starch, during olive (Olea europea L.) fruit ripening. Plant Cell Physiol 44: 1152-1161

    PubMed  Google Scholar 

  • Caspar T, Huber SC and Somerville C (1985) Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phospho-glucomutase activity. Plant Physiol 79: 11-17

    PubMed  Google Scholar 

  • Caspar T, Lin T-P, Kakefuda G, Benbow L, Preiss J and Somerville C (1991) Mutants of Arabidopsis with altered reg-ulation of starch degradation. Plant Physiol 95: 1181-1188

    PubMed  Google Scholar 

  • Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM and Smith AM (2004) A cytosolic glucosyl-transferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37: 853-863

    PubMed  Google Scholar 

  • Critchley JH, Zeeman SC, Takaha T, Smith AM and Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidop-sis. Plant J 26: 89-100

    PubMed  Google Scholar 

  • de Veau EJ and Burris JE (1988) Photorespiratory rates in wheat and maize as determined by 18 O-labeling. Plant Physiol 90: 500-511

    Google Scholar 

  • Douce R and Neuburger M (1999) Biochemical dissection of photorespiration. Curr Opin Plant Biol 2: 214-222

    PubMed  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M and Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6: 167-176

    PubMed  Google Scholar 

  • Duwenig E, Steup M, Willmitzer L and Kossmann J (1997) An-tisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. Plant J 12: 323-333

    PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S and von Heijne G (2000) Predicting subcellular localization of proteins based on their N- terminal amino acid sequence. J Mol Biol 300: 1005-1016

    PubMed  Google Scholar 

  • Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J and Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2: 325-345

    PubMed  Google Scholar 

  • Fischer K and Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7: 345-351

    PubMed  Google Scholar 

  • Fischer K, Kammerer N, Gutensohn M, Arbinger B, Weber A, H äusler RE and Fl ügge UI (1997) A new class of plastidal phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9: 453-462

    PubMed  Google Scholar 

  • Fliege R, Fl ügge UI, Werdan K and Heldt HW (1978) Spe-cific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta 502: 232-247

    PubMed  Google Scholar 

  • Fl ügge UI (1995) Phosphate translocation in the regulation of photosynthesis. J Exp Bot 46: 1317-1323

    Google Scholar 

  • Fl ügge UI (1999) Phosphate translocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50: 27-45

    Google Scholar 

  • Fl ügge UI, Woo KC and Heldt HW (1988) Characteristics of 2-oxoglutarate and glutamate transport in spinach chloroplasts. Studies with a double-silicone-layer centrifugation technique and in liposomes. Planta 174: 534-541

    Google Scholar 

  • Fl ügge UI, Fischer K, Gross A, Sebald W, Lottspeich F and Eck-erskorn C (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8: 39-46

    Google Scholar 

  • Fl ügge UI, H äusler RE, Ludewig F and Fischer K (2003) Func-tional genomics of phosphate antiport systems of plastids. Physiol Plant 118: 475-482

    Google Scholar 

  • Gerhard R, Stitt M and Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Plant Physiol 83: 399-407

    Google Scholar 

  • Hanson KR and McHale NA (1988) A starchless mutant of Nico-tiana sylvestris containing a modified plastid phosphogluco-mutase. Plant Physiol 88: 838-844

    PubMed  Google Scholar 

  • Haupt-Herting S, Klug K and Fock HP (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126: 388-396

    PubMed  Google Scholar 

  • H äusler RE, Schlieben NH, Schulz B and Fl ügge UI (1998) Com-pensation of decreased triose phosphate/phosphate transloca-tor activity by accelerated starch turnover and glucose trans-port in transgenic tobacco. Planta 204: 366-376

    Google Scholar 

  • H äusler RE, Schlieben NH and Fl ügge UI (2000a) Control of carbon partitioning and photosynthesis by the triose phos-phate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator. Planta 210: 383-390

    Google Scholar 

  • H äusler RE, Schlieben NH, Nicolay P, Fischer K, Fischer KL and Fl ügge UI (2000b) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate transloca-tor in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants withantisense repression and overexpression of the triose phos-phate/phosphate translocator. Planta 210: 371-382

    Google Scholar 

  • Heineke D, Kruse A, Fl ügge UI, Frommer WB, Riesmeier JW, Willmitzer L and Heldt HW (1994) Effect of antisense re-pression of the chloroplast triose-phosphate translocator on photosynthetic metabolism in transgenic potato plants. Planta 193: 174-180

    Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R and Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13: 535-551

    PubMed  Google Scholar 

  • Herold A, Leegood RC, McNeil PH and Robinson SP (1981) Accumulation of maltose during photosynthesis in protoplasts isolated from spinach leaves treated with mannose. Plant Physiol 67: 85-88

    PubMed  Google Scholar 

  • Howitz KT and McCarty RE (1985a) Substrate specificity of the pea chloroplast glycolate transporter. Biochemistry 24: 3645-3650

    Google Scholar 

  • Howitz KT and McCarty RE (1985b) Kinetic characteristics of the chloroplast envelope glycolate transporter. Biochemistry 24: 2645-2652

    Google Scholar 

  • Howitz KT and McCarty RE (1991) Solubilization, partial purifi-cation and reconstitution of the glycolate glycerate transporter from chloroplast inner envelope membranes. Plant Physiol 96: 1060-1069

    PubMed  Google Scholar 

  • Huber SC and Edwards GE (1977) Transport in C4 mesophyll chloroplasts: characterization of the pyruvate carrier. Biochim Biophys Acta 462: 583-602

    PubMed  Google Scholar 

  • Huber SC and Hanson KR (1992) Carbon partitioning and growth of a starchless mutant of Nicotiana sylvestris. Plant Physiol 99: 1449-1454

    PubMed  Google Scholar 

  • Huber SC and Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Biol Plant Mol Biol 47: 431-444

    Google Scholar 

  • Journet EP and Douce R (1985) Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol 79: 458-467

    PubMed  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A and Fl ügge UI (1998) Molecular characterization of a Ccbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter. Plant Cell 10: 105-117

    PubMed  Google Scholar 

  • Kelly GJ and Latzko E (1980) Oat (Avena sativa L.) leaf phos-phoglucose isomerase: competitive inhibition by erythrose-4-phosphate. Photosynth Res 3: 181-188

    Google Scholar 

  • Knappe S, Fl ügge UI and Fischer K (2003a) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131: 1178-1190

    Google Scholar 

  • Knappe S, L öttgert T, Schneider A, Voll L, Fl ügge UI and Fischer K (2003b) Characterization of two functional phos-phoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis —AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J 36: 411-420

    Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7: 235-246

    PubMed  Google Scholar 

  • Kofler H, H äusler RE, Schulz B, Gr öner F, Fl ügge UI and Weber A (2000) Molecular characterization of a new mutant al-lele of the plastid phosphoglucomutase in Arabidopsis, and complementation of the mutant with the wild-type cDNA. Mol Gen Genet 263: 978-986

    PubMed  Google Scholar 

  • Kossmann J and Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19: 171-226

    Google Scholar 

  • Laisk A and Sumberg A (1994) Partitioning of the leaf CO2 ex-change into components using CO2 exchange and fluorescence measurements. Plant Physiol 106: 689-695

    PubMed  Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD and H äusler RE (1995) The regulation and control of photorespiration. J Exp Bot 46: 1397-1414

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A and Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts pro-ceeds via a mevalonate-independent pathway. FEBS Lett 400: 271-274

    PubMed  Google Scholar 

  • Lin T-P, Caspar T, Somerville C and Preiss J (1988a) A starch deficient mutant of Arabidopsis thaliana with low ADPglu-cose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175-1181

    Google Scholar 

  • Lin T-P, Caspar T, Somerville C and Preiss J (1988b) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86: 1131-1135

    Google Scholar 

  • Lorberth R, Ritte G, Willmitzer L and Kossmann J (1998) In-hibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nature Biotech 16: 473-477

    Google Scholar 

  • Lu Y and Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218: 466-473

    PubMed  Google Scholar 

  • Lunn JE and MacRae E (2003) New complexities in the synthesis of sucrose. Curr Opin Plant Biol 6: 208-214

    PubMed  Google Scholar 

  • Micallef BJ and Sharkey TD (1996) Genetic and physiological characterization of Flaveria linearis plants having a reduced activity of cytosolic fructose-1,6-bisphosphatase. Plant Cell Environ 19: 1-9

    Google Scholar 

  • Micallef BJ, Dennis DT and Sharkey TD (1996) How do plants of Flaveria linearis having no activity of the “essential” enzyme cytosolic fructose bisphosphatase survive? Plant Physiol 111: 298-298

    Google Scholar 

  • Niittyl ä T, Messerli G, Trevisan M, Chen J, Smith AM and Zee-man SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303: 87-89

    Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation and modification. Annu Rev Plant Biol 35: 415-442

    Google Scholar 

  • Ogren WL and Bowes G (1971) Ribulose diphosphate carboxy-lase regulates soybean photorespiration. Nat New Biol 230: 159-160

    PubMed  Google Scholar 

  • Proudlove MO and Thurman DA (1981) The uptake of 2-oxoglutarate and pyruvate by isolated pea chloroplasts. New Phytol 88: 255-264

    Google Scholar 

  • Renn é P, Dreßen U, Hebbeker U, Hille D, Fl ügge UI, Westhoff P and Weber APM (2003) The Arabidopsis mutant dct is defi-cient in the plastidic glutamate/malate translocator DiT2. Plant J 35: 316-331

    Google Scholar 

  • Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381: 639-648

    PubMed  Google Scholar 

  • Reumann S, Maier E, Benz R and Heldt HW (1996) A specific porin is involved in the malate shuttle of leaf peroxisomes. Biochem Soc Trans 24: 754-757

    PubMed  Google Scholar 

  • Reumann S, Maier E, Heldt HW and Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251: 359-366

    PubMed  Google Scholar 

  • Riesmeier JW, Fl ügge UI, Schulz B, Heineke D, Heldt HW, Willmitzer L and Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90: 6160-6164

    PubMed  Google Scholar 

  • Ritte G and Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytol 159: 195-202

    Google Scholar 

  • Ritte G, Lorberth R and Steup M (2000) Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant J 21: 387-391

    PubMed  Google Scholar 

  • Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J and Steup M (2002) The starch-related R1 protein is an α-glucan, water dikinase. Proc Natl Acad Sci USA 99: 7166-7171

    PubMed  Google Scholar 

  • Rost S, Frank C and Beck E (1996) The chloroplast envelope is permeable for maltose but not for maltodextrins. Biochim Biophys Acta 1291: 221-227

    PubMed  Google Scholar 

  • Sch äfer G, Heber U and Heldt HW (1977) Glucose transport into intact spinach chloroplasts. Plant Physiol 60: 286-289

    Google Scholar 

  • Scheidig A, Fr öhlich A, Schulze S, Lloyd JR and Kossmann J (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30: 581-591

    PubMed  Google Scholar 

  • Schleucher J, Vanderveer PJ and Sharkey TD (1998) Export of carbon from chloroplasts at night. Plant Physiol 118: 1439-1445

    PubMed  Google Scholar 

  • Schmid J and Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39: 737-749

    Google Scholar 

  • Schneider A, H äusler RE, Kolukisaoglu U, Kunze R, van der Graaff E, Schwacke R, Catoni E, Desimone M and Fl ügge UI (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mo-bilisation is abolished. Plant J 32: 685-699

    PubMed  Google Scholar 

  • Schulze-Siebert D, Heineke D, Scharf H and Schulz G (1984) Pyruvate-derived amino acids in spinach chloroplasts: synthe-sis and regulation during photosynthetic carbon metabolism. Plant Physiol 76: 465-471

    PubMed  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Fl ügge UI and Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131: 16-26

    PubMed  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK and Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chain of chlorophylls and plastochinone) via a novel pyruvate/glyceraldehyd 3-phosphate non-mevalonate pathway in the green algae Scenedesmus obliquus. Biochem J 316: 73-80

    PubMed  Google Scholar 

  • Schwender J, Zeidler J, Gr öner R, M üller C, Focke M, Braun S, Lichtenthaler FW and Lichtenthaler HK (1997) Incorpora-tion of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414: 129-134

    PubMed  Google Scholar 

  • Servaites JC, Fondy BR, Li B and Geiger DR (1989a) Sources of carbon export from spinach leaves throughout the day. Plant Physiol 90: 1168-1174

    Google Scholar 

  • Servaites JC, Geiger DR, Tucci MA and Fondy BR (1989b) Leaf carbon metabolism and metabolite levels during a period of sinusoidal light. Plant Physiol 89: 403-408

    Google Scholar 

  • Servaites JC and Geiger DR (2002) Kinetic characteristics of chloroplast glucose transport. J Exp Bot 53: 1581-1591

    PubMed  Google Scholar 

  • Sharkey TD (1985) O2 -insensitive photosynthesis in C-3 plants—its occurrence and a possible explanation. Plant Phys-iol 78: 71-75

    Google Scholar 

  • Sharkey TD and Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52: 407-436

    PubMed  Google Scholar 

  • Sharkey TD, Savitch LV, Vanderveer PJ and Micallef BJ (1992) Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiol 100: 210-215

    PubMed  Google Scholar 

  • Sharkey TD, Laporte M, Lu Y, Weise SE and Weber APM (2004) Engineering plants for elevated CO2 : a relationship between starch degradation and sugar sensing. Plant Biol 6: 280-288

    PubMed  Google Scholar 

  • Siedow JN and Day DA (2000) Respiration and photorespiration. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochem-istry & Molecular Biology of Plants, pp 676-728. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Smith AM (1999) Making starch. Curr Opin Plant Biol 2: 223-229

    PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Thorneycroft D and Smith SM (2003) Starch mobilization in leaves. J Exp Bot 54: 577-583

    PubMed  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Re-solving a few issues concerning photorespiration. Plant Phys-iol 125: 20-24

    Google Scholar 

  • Somerville SC and Ogren WL (1983) An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci USA 80: 1290-1294

    PubMed  Google Scholar 

  • Somerville SC and Somerville CR (1985) A mutant of Arabidop-sis deficient in chloroplast dicarboxylate transport is missing an envelope protein. Plant Sci 37: 217-220

    Google Scholar 

  • Spreitzer RJ and Salvucci ME (2002) Rubisco: structure, regu-latory interactions and possibilities for a better enzyme. Annu Rev Plant Biol 53: 449-475

    PubMed  Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate as a regulatory metabolite in plants. Annu Rev Plant Physiol Plant Mol Biol 41: 153-185

    Google Scholar 

  • Stitt M and ap Rees T (1979) Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate and glycolysis. Phytochemistry 18: 1905-1911

    Google Scholar 

  • Stitt M, Gerhardt R and Heldt HW (1987) The contribution of fructose 2,6-bisphosphate to the regulation of sucrose synthe-sis during photosynthesis. Physiol Plant 69: 377-386

    Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, H äusler RE, Li JM, Post-Beittenmiller D, Kaiser WM, Pyke KA, Fl ügge UI and Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development and plastid-dependent nuclear gene expression. Plant Cell 11: 1609-1621

    PubMed  Google Scholar 

  • Szmelcman S, Schwartz M, Silhavy TJ and Boos W (1976) Mal-tose transport in Escherichia coli K12—comparison of trans-port kinetics in wild-type and lambda-resistant mutants with dissociation-constants of maltose-binding protein as measured by fluorescence quenching. Eur J Biochem 65: 13-19

    PubMed  Google Scholar 

  • Takaha T, Critchley J, Okada S and Smith SM (1998) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-α-glucanotransferase). Planta 205: 445-451

    Google Scholar 

  • Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tabata S, Miyake H and Sugiyama T (2002) Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxy-late transporters in Arabidopsis thaliana. Plant Cell Physiol 43: 706-717

    PubMed  Google Scholar 

  • Taniguchi Y, Nagasaki J, Kawasaki M, Miyake H, Sugiyama T and Taniguchi M (2004) Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol 45: 187-200

    PubMed  Google Scholar 

  • Trethewey RN and ap Rees T (1994) A mutant of Arabidopsis thaliana lacking the ability to transport glucose across the chloroplast envelope. Biochem J 301: 449-454

    PubMed  Google Scholar 

  • Tsugeki R and Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96: 12941-12946

    PubMed  Google Scholar 

  • Van der Straeten D, Rodrigues-Pousada RA, Goodman HM and Van Montagu M (1991) Plant enolase: gene structure, expres-sion and evolution. Plant Cell 3: 719-735

    PubMed  Google Scholar 

  • Veramendi J, Roessner U, Renz A, Willmitzer L and Trethewey RN (1999) Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121: 123-133

    PubMed  Google Scholar 

  • Voll L, H äusler RE, Hecker R, Weber A, Weissenbock G, Fiene G, Waffenschmidt S and Fl ügge UI (2003) The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway. Plant J 36: 301-317

    PubMed  Google Scholar 

  • Weber A (2004) Solute transporters as connecting elements be-tween cytosol and plastid stroma. Curr Opin Plant Biol 7: 247-253

    PubMed  Google Scholar 

  • Weber A, Menzlaff E, Arbinger B, Gutensohn M, Eckerskorn C and Fl ügge UI (1995) The 2-oxoglutarate/malate translo-cator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34: 2621-2627

    PubMed  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gr öner F, Hebbeker U and Fl ügge UI (2000) Identification, purification and molecular cloning of a putative plastidic glucose translo-cator. Plant Cell 12: 787-801

    PubMed  Google Scholar 

  • Weber A and Fl ügge UI (2002) Interaction of cytosolic and plas-tidic nitrogen metabolism in plants. J Exp Bot 53: 865-874

    PubMed  Google Scholar 

  • Weber APM, Schneidereit J and Voll LM (2004) Using mutants to probe the in vivo function of plastid envelope membrane metabolite transporters. J Exp Bot 55: 1231-1244

    PubMed  Google Scholar 

  • Weise SE, Weber APM and Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218: 474-482

    PubMed  Google Scholar 

  • Wiese A, Gr öner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Fl ügge UI and Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461: 13-18

    PubMed  Google Scholar 

  • Wingler A, Lea PJ, Quick WP and Leegood RC (2000) Photores-piration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B-Biol Sci 355: 1517-1529

    Google Scholar 

  • Woo KC, Fl ügge UI and Heldt HW (1987) A two-translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Physiol 84: 624-632

    PubMed  Google Scholar 

  • Yang Y and Steup M (1990) Polysaccharide fraction from higher-plants which strongly interacts with the cytosolic phosphory-lase isozyme. 1. Isolation and characterization. Plant Physiol 94: 960-969

    PubMed  Google Scholar 

  • Yu JW and Woo KC (1992) Ammonia assimilation and metabo-lite transport in isolated chloroplasts. I. Kinetic measurement of 2-oxoglutarate and malate uptake via the 2-oxoglutarate translocator in oat and spinach chloroplasts. Aust J Plant Phys-iol 19: 653-658

    Google Scholar 

  • Yu TS, Lue WL, Wang SM and Chen J (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123: 319-326

    PubMed  Google Scholar 

  • Yu TS, Kofler H, H äusler RE, Hille D, Fl ügge UI, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue WL, Chen J and Weber A (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degra-dation in plants, and not in the chloroplast hexose transporter. Plant Cell 13: 1907-1918

    PubMed  Google Scholar 

  • Zeeman SC and ApRees T (1999) Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ 22: 1445-1453

    Google Scholar 

  • Zeeman SC, Northrop F, Smith AM and Rees T (1998a) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J 15: 357-365

    Google Scholar 

  • Zeeman SC, Umemoto T, Lue WL, Au-Yeung P, Martin C, Smith AM and Chen J (1998b) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phyto-glycogen. Plant Cell 10: 1699-1712

    Google Scholar 

  • Zeeman SC, Tiessen A, Pilling E, Kato KL, Donald AM and Smith AM (2002) Starch synthesis in Arabidopsis. Granule synthesis, composition and structure. Plant Physiol 129: 516-529

    PubMed  Google Scholar 

  • Zrenner R, Krause KP, Apel P and Sonnewald U (1996) Reduc-tion of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J 9: 671-681

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Weber, A.P.M. (2007). Synthesis, Export and Partitioning of the End Products of Photosynthesis. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_14

Download citation

Publish with us

Policies and ethics