Skip to main content

Early Years of MHD at Cambridge University Engineering Department

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

How the study of magnetohydrodynamics came to the Engineering Department of Cambridge University was never fully recorded. What is known is that an interest in the heat-transfer properties of liquid metals began with the research undertaken by L.M. Trefethen, who entered the Department as a research student in 1946. Trefethen’s earlier education had been in the United States, culminating in a master’s degree from the Massachusettes Institute of Technology. His subject of research at Cambridge was approved initially as “Gas turbines – turbine blade cooling”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murgatroyd W (1953) Experiments in magnetohydrodynamic channel flow. Phil Mag 44:1348-1354

    Google Scholar 

  2. Hartmann J, Lazarus F (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat-Fys Medd 15 (7):1-45

    Google Scholar 

  3. Lock RC (1955) The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field. Proc R Soc Lond Ser A 233:105-125

    Article  MathSciNet  Google Scholar 

  4. Lykoudis PS (1960) Transition from laminar to turbulent flow in magneto-fluid mechanic channels. Rev Mod Phys 32:796-798

    Article  MATH  Google Scholar 

  5. Branover GG (1967) Resistance of magnetohydrodynamic channels. Magneto-hydrodynamics 3:1-11

    Google Scholar 

  6. Lingwood RJ, Alboussière T (1999) On the stability of the Hartmann layer. Phys Fluids 11:2058-2068

    Article  MATH  MathSciNet  Google Scholar 

  7. Alboussière T, Lingwood RJ (2000) A model for the turbulent Hartmann layer. Phys Fluids, 12:1535-1543

    Article  MATH  Google Scholar 

  8. Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Cam Phil Soc 49:136-144

    Article  MATH  MathSciNet  Google Scholar 

  9. Gold RR (1962) Magnetohydrodynamic pipe flow, Pt I. J Fluid Mech 13:505-512

    Article  MATH  MathSciNet  Google Scholar 

  10. Shercliff JA (1954) Relation between the velocity profile and the sensitivity of electromagnetic flowmeters. J Appl Phys 25:817-818

    Article  Google Scholar 

  11. Shercliff JA (1955) Experiments on the dependence of sensitivity on velocity profile in electromagnetic flowmeters. J Sci Instrum 32:441-412

    Article  Google Scholar 

  12. Shercliff JA (1956) Edge effects in electromagnetic flowmeters. J Nucl Energy 3:305-311

    Google Scholar 

  13. Shercliff JA.(1962) The theory of electromagnetic flow measurement. Cambridge University Press, Cambridge

    Google Scholar 

  14. Hendry J, Lawson JD (1993) Fusion research in the UK 1945-1960. AEA Techology Report AHO 1

    Google Scholar 

  15. Dolder K, Hide R (1960) Experiments on the passage of a shock wave through a magnetic field. Rev Mod Phys 32:770-779

    Article  Google Scholar 

  16. Patrick RM, Brogan TR (1959) One-dimensional flow of an ionized gas through a magnetic field. J Fluid Mech 5:289-309

    Article  MATH  MathSciNet  Google Scholar 

  17. Cowley MD (1961) On some kinematic problems in magnetohydrodynamics. Quart J Mech Appl Math 14:319-333

    Article  MATH  MathSciNet  Google Scholar 

  18. Cowley MD (1961) The distortion of a magnetic field by flow in a shock tube. J Fluid Mech 11:567-576

    Article  MATH  MathSciNet  Google Scholar 

  19. Shercliff JA (1958) Some generalizations in steady one-dimensional gas dynamics. J Fluid Mech 3:645-657

    Article  MATH  MathSciNet  Google Scholar 

  20. Weyl H (1949) Shock waves in arbitrary fluids. Comm Pure Appl Math 2:103-122

    Article  MATH  MathSciNet  Google Scholar 

  21. Cowley MD (1960) A magnetogasdynamic analogy. ARS J 30:271-272

    Google Scholar 

  22. Shercliff JA (1960) One-dimensional magnetogasdynamics in oblique fields. J Fluid Mech 9:481-505

    Article  MATH  MathSciNet  Google Scholar 

  23. Shercliff JA (1960) Some generalizations in one-dimensional magnetogasdynamics. Rev Mod Phys 32:980-986

    Article  MATH  MathSciNet  Google Scholar 

  24. Imai I (1960) On flows of conducting fluids past bodies. Rev Mod Phys 32:992-999

    Article  MATH  MathSciNet  Google Scholar 

  25. Sears WR (1959) Magnetohydrodynamic effects in aerodynamic flows. ARS J 20:397-406

    Google Scholar 

  26. Germain P (1960) Shock waves and shock-wave structure in magneto-fluid dynamics. Rev Mod Phys 32:951-958

    Article  MathSciNet  Google Scholar 

  27. Akhiezer AI, Liubarski GI, Polovin RV (1959) The stability of shock waves in magnetohydrodynamics. Soviet Phys JETP 8:507

    Google Scholar 

  28. Anderson JE(1963) Magnetohydrodynamic shock waves. MIT press, Cambridge, MA

    MATH  Google Scholar 

  29. Todd L (1964) Evolution of the trans-Alfvénic normal shock in a gas of finite electrical conductivity. J Fluid Mech 18:321-336

    Article  MATH  MathSciNet  Google Scholar 

  30. Todd L (1965) The evolution of trans-Alfvénic shocks in gases of finite electrical conductivity. J Fluid Mech 21:193-209

    Article  MATH  MathSciNet  Google Scholar 

  31. Todd L (1966) The evolution of switch-on and switch-off shocks in a gas of finite electrical conductivity. J Fluid Mech 24:597-608

    Article  Google Scholar 

  32. Cowley MD (1963) On the plane flow of gas with finite electrical conductivity in a strong magnetic field. J Fluid Mech 15:577-596

    Article  MATH  MathSciNet  Google Scholar 

  33. Cowley MD (1967) Gas-ionizing shocks in a magnetic field. J Plasma Phys 1:37-54

    Article  Google Scholar 

  34. Cowley MD, Horlock JH (1994) On one-dimensional flow of a conducting gas between electrodes - with application to MHD thrusters. J Fluid Mech 266: 147-173

    Article  MATH  Google Scholar 

  35. Shercliff JA (1965) A textbook of magnetohydrodynamics. Pergamon Press, Oxford

    Google Scholar 

  36. Jameson A (1964) A demonstration of Alfvén waves, Part I. Generation of standing waves. J Fluid Mech 19:513-527

    Article  Google Scholar 

  37. Shercliff JA(1976) Technological Alfvén waves. Proc Instn Elect Engrs, 123:1035-1042

    Google Scholar 

  38. Decker JA (1964) Ion wave resonance and plasma instability in a caesium discharge. J Appl Phys 35:497-501

    Article  Google Scholar 

  39. Grad H (1960) Reducible problems in magneto-fluid dynamic steady flows. Rev Mod Phys 32:830-847

    Article  MATH  MathSciNet  Google Scholar 

  40. Hasimoto H (1960) Steady longitudinal motion of a cylinder in a conducting fluid. J Fluid Mech 8:61-81

    Article  MATH  MathSciNet  Google Scholar 

  41. Moffatt HK (1964) Electrically driven steady flows in magneto-hydrodynamics. In: Gortler H (ed) Proc. XIth Int Cong Appl Mech Munich, Springer-Berlin, pp: 946-953

    Google Scholar 

  42. Alty CJN (1971) Magnetohydrodynamic duct flow in a uniform transverse magnetic field of arbitrary orientation. J Fluid Mech 48:429-461

    Article  Google Scholar 

  43. Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21:577-590

    Article  MATH  MathSciNet  Google Scholar 

  44. Hunt JCR, Stewartson K (1965) Magnetohydrodynamic flow in rectangular ducts. Part 2. J Fluid Mech 23:563-581

    Article  MathSciNet  Google Scholar 

  45. Cowley MD (1996) Natural convection in rectangular enclosures of arbitrary orientation with magnetic field vertical. Magnetohydrodynamics 32:390-398

    MathSciNet  Google Scholar 

  46. Chandrasekhar S. (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    MATH  Google Scholar 

  47. Baylis JA (1964) Detection of the onset of instability in cylindrical magnetohydrodynamic flow. Nature 204:563

    Article  Google Scholar 

  48. Baylis JA (1971) Experiments on laminar flow in curved channels of square section. J Fluid Mech 48:417-422

    Article  Google Scholar 

  49. Baylis JA, Hunt JCR (1971) MHD flow in an annular channel; theory and experiment. J Fluid Mech 48:423-428

    Article  Google Scholar 

  50. Bödewadt UT (1940) Die Drehstromung überfestem Grunde. Z Ang Math Mech 20:241

    Article  Google Scholar 

  51. King WS, Lewellen WS (1964) Boundary-layer similarity solutions for rotating flows with and without magnetic interaction. Phys Fluids 7:1674-1680

    Article  MATH  MathSciNet  Google Scholar 

  52. Stephenson CJ (1969) Magnetohydrodynamic flow between rotating co-axial disks. J Fluid Mech 38:335-352

    Article  Google Scholar 

  53. Lemaire A (1962) Centre d’etudes Nucleaires de Saclay. Rapp. IFP/7713 CEA/PA.IGn/RT.150

    Google Scholar 

  54. Baker RC (1965) Maximum growth rate of Rayleigh-Taylor instabilities due to an electromagnetic force. Nature 207:65-66

    Article  Google Scholar 

  55. Robinson IS (1975) A novel form of the MHD Rayleigh-Taylor instability. J Fluid Mech 72:135-143

    Article  Google Scholar 

  56. Baker RC (1968) On the potential distribution resulting from flow across a magnetic field projecting from a plane wall. J Fluid Mech 33:73-86

    Article  MATH  Google Scholar 

  57. Bevir MK, Shercliff JA (1968) Theory of electromagnetic flowmeters with non-uniform fields. 12th IUTAM Congress of Applied Mechanics, Stanford, Cambridge

    Google Scholar 

  58. Shercliff JA (1965) Magnetohydrodynamics (a 30 min. educational film), Educational Services Inc. for the National Committee on Fluid Mechanic Films, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cowley, M. (2007). Early Years of MHD at Cambridge University Engineering Department. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics