Skip to main content

CHERNOBYL-BORN RADIONUCLIDES: GROUNDWATER PROTECTABILITY WITHRESPECT TO PREFERENTIAL FLOW ZONES

  • Conference paper
Applied Hydrogeophysics

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

A significant increase of technogenous load on the environment caused by aerosol fallout of heavy metals consisting of industrial atmospheric injections and automobile exhaust gases, wide use of pesticides and fertilizers in agriculture, as well as the threat of radioactive contamination as a result of nuclear weapons tests and danger of nuclear war have led to apprehensions of the possible contamination of shallow groundwater that occurs over wide areas and intensively used for the water supply of villages, small settlements and farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, L., T. Bennet, J.H. Lehr, R.J Petty, and G. Hackett, 1987. DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, Ada, EPA/600/2-87-036.

    Google Scholar 

  • Baker, R.S., and D. Hillel, 1990. Laboratory tests of a theory of fingering during infiltration into layered soils. Soil Sci. Soc. Am. J., 54, 20–30.

    Article  Google Scholar 

  • Baryakhtar, V.G., V.I. Kholosha, and D.M. Grodzinsky (eds), 1997. Chernobyl Catastrophe. National Academy of Sciences of Ukraine. Ukrainian Ministry for the Protection of the Population (?) from Chornobyl NPP Accident Consequences, Editorial House of Annual Issue “Export of Ukraine,” Ministry of Health, Kyiv, 576 p.

    Google Scholar 

  • Belousova, A.P., and O.B. Galaktionova, 1994. On the methodology of assessment of natural groundwater protectability from radioactive contamination, //Vodnye Resursy, Vol. 21, No 3, Moscow, pp. 340–345. (In Russian)

    Google Scholar 

  • Beven, K., and P. Germann, 1982. Macropores and water flow in soils, Water Resour. Res., 18 (5), 1311–1325.

    Article  Google Scholar 

  • Borzilov, V.A., 1989. Physical-mathematical modeling of processes determining the carrying out of long-lived radionuclides from watersheds in 30-km zone of Chernobyl NPP. //Meteorology and Hydrology, Vol. 1, Moscow, pp. 5–13. (In Russian)

    Google Scholar 

  • Bouma, J., 1981. Soil morphology and preferential flow along macropores. Agr. Water Manage., 3, 235–250.

    Article  Google Scholar 

  • Gees, R.A., and A.K. Lyall, 1969. Erosion sand columns in dune sand, Cape Sable Island, Nova Scotia, Canada. Can. J. Earth Sci., 6, 344–347.

    Google Scholar 

  • Glass, R.J., T.S. Steenhuis, and J.-Y. Parlange, 1989. Mechanism for finger persistence in homogeneous, unsaturated, porous media: Theory and verification, Soil Sci., 148, 60–70.

    Article  Google Scholar 

  • Goldberg, V.M., 1983. Natural and technogenic factors of groundwater protectability, Bull. Moscow Soc. Nat. Invest., 2, 103–110. (In Russian)

    Google Scholar 

  • Greenland, D.J., 1977. Soil drainage by intensive arable cultivation: Temporary or permanent? Phil. Trans. R. Soc. (Lond.), B281, 193–208.

    Google Scholar 

  • Gripp, K., 1961. Ueber Werden und Vergehen von Barchanen an der Nordsee-Kueste Schleswig-Holsteins, Berlin, Germany, Zeitsch. fuer Geomorphol., Neue Folge, Bd., 5, 24–36.

    Google Scholar 

  • Helling, C.S., and T.J. Gish, 1991. Physical and chemical processes affecting preferential flow, Preferential Flow, in Proceedings of the National Symposium, December 16–17, 1991, Chicago, Illinois, edited by N.J. Gish and A. Shirmohammadi, American Society of Agricultural Engineering (ASAE), pp. 77–86.

    Google Scholar 

  • Hill, S., 1952. Channeling in packed columns, Chem. Eng. Sci., 1, 247–253.

    Article  Google Scholar 

  • Hillel, D., and R.S. Baker, 1988. A descriptive theory of fingering during infiltration into layered soils, Soil Sci., 146, 51–56.

    Article  Google Scholar 

  • Kung, K.-J.S., 1990. Preferential flow in a sandy vadose zone. 1. Field observation. 2. Mechanism and implications. Geoderma, 46, 51–71.

    Article  Google Scholar 

  • Landon, J.R. (ed), 1984. Booker Tropical Soil Manual. Booker Agricultural International Ltd., London, 450 p.

    Google Scholar 

  • Lawes, J.B., J.H. Gilbert, and R. Warington, 1882. On the amount and composition of the rain and drainage water collected at Rothamsted, Williams Clowes and Sons, Ltd., London, 167 p. Originally published in J. R. Agric. Soc. Engl., XVII (1881), 241–279, 311–350; XVIII (1882), 1–71.

    Google Scholar 

  • Lissey, A., 1971. Depression-focused transient groundwater flow patterns in Manitoba, The Geological Association of Canada, Special Paper No. 9, pp. 333–341.

    Google Scholar 

  • Lukner, L., and V.M. Shestakov, 1988. Modeling Groundwater Migration, Nedra, Moscow.

    Google Scholar 

  • Mironenko, V.A., E.V. Molsky, and V.G. Rumynin, 1988. Studying Groundwater Contamination in Mining Regions, Nedra, Leningrad.

    Google Scholar 

  • Mironenko, V.A., and V.G. Rumynin, 1990. Assessment of protection properties of the unsaturated zone (as applied to groundwater contamination), Eng. Geol., 2, 3–18. (In Russian)

    Google Scholar 

  • Mironenko, V.A., and V.G. Rumynin, 1999. Problems of Hydro-geo-ecology, Vol. 3, Moscow State University, Moscow.

    Google Scholar 

  • Nieber, J.L., C.A.S. Tosomeen, and B.N. Wilson, 1993. Stochastic-mechanistic model of depression-focused recharge, Hydrologic Investigation, Evaluation, and Ground Water Modeling, edited by Y. Eckstein and A. Zaporozec, in Proceedings of Industrial and Agricultural Impacts on the Hydrologic Environment, The Second USA/CIS Joint Conference on Environmental Hydrology and Hydrogeology, pp. 207–234.

    Google Scholar 

  • Nieber, J.L., 1996. Modeling finger development and persistence in initially dry porous media. Geoderma, 70, 209–229.

    Article  Google Scholar 

  • Nieber, J.L., 2001. The relation of preferential flow to water quality, and its theoretical and experimental quantification. Preferential Flow. Water Management and Chemical Transport in the Environment. in Proceedings of the 2nd International Symposium, January 3–5, 2001, Honolulu, American Society of Agricultural Engineers (ASAE), pp. 1–9.

    Google Scholar 

  • Parlange, J.-Y., T.S. Steenhuis, R.J. Glass, T.L. Richards, N.B. Pickering, W.J. Waltman, N.O. Bailey, M.S. Andreini, and J.A. Throop, 1988. The Flow of Pesticides Through Preferential Paths in Soils, Cornell University, Ithaca, NY, N.Y. Food Life Sci. Q., 18 (1, 2), 20–23.

    Google Scholar 

  • Pashkovsky, I.S., 2002. Principles of assessment of groundwater protectability from contamination. //Present problems of hydrogeology and hydromechanics, St. Petersburg State University, St. Petersburg, pp. 122–131.

    Google Scholar 

  • Phillip, J.R., 1975. Stability analysis of infiltration, Soil Sci. Soc. Am. Proc., 39, 1042–1049.

    Article  Google Scholar 

  • Prazak, J., M. Sir, F. Kubik, J. Tywoniak, and C. Zarcone, 1992. Oscillation phenomena in gravity-driven drainage in coarse porous media, Water Resour. Res., 28, 1849–1855.

    Article  Google Scholar 

  • Raats, P.A.C., 1973. Unstable wetting fronts in uniform and nonuniform soils, Soil Sci. Soc. Am. Proc., 37, 681–685.

    Article  Google Scholar 

  • Rosen, L., 1994. A study of the DRASTIC methodology with emphasis on Swedish conditions, Ground Water, 32, 278–285.

    Article  Google Scholar 

  • Rundquist, D.C., A.I. Peters, L. Di, D.A. Rodekohr, R.L. Ehrman, and G. Murray, 1991. Statewide groundwater-vulnerability assessment in Nebraska using the DRASTIC/GIS Model, Geocarto Int., 2, 51–58.

    Article  Google Scholar 

  • Schnoor, J.L. (ed), 1992. Fate of pesticides and chemicals in the environment, Wiley , 436 p.

    Google Scholar 

  • Singh, P., and R.S. Kanwar, 1991. Preferential solute transport through macropores in large undisturbed saturated columns, J. Environ. Qual., 20, 295–300.

    Article  Google Scholar 

  • Shestopalov, V.M., 1979. Formation of Exploitation Groundwater Resources of Platform Structures of Ukraine, Naukova Dumka, Kiev, 214 p.

    Google Scholar 

  • Shestopalov, V.M., 1981. Natural Groundwater Resources of Platform Artesian Basins of Ukraine, Naukova Dumka, Kiev.

    Google Scholar 

  • Shestopalov, V.M. (ed), 1988. Water Exchange in Hydrogeological Structures of Ukraine. Methods of Water Exchange Study, Naukova Dumka, Kiev, 272 p.

    Google Scholar 

  • Shestopalov, V.M., V.V. Gudzenko, Y.F. Rudenko, and A.S. Boguslavskij, 1992. Combined analysis, modelling and forecast of long-term underground water contamination inside the Chernobyl Fallout influenced zone, in Hydrological Impact of Nuclear Power Plant Systems, International Hydrological Programme, UNESCO Chernobyl Programme, Paris.

    Google Scholar 

  • Shestopalov, V.M., V.V. Goudzenko, Yu.F. Rudenko, V.N. Bublias, and A.S. Boguslavsky, 1997. Assessment and forecast of groundwater and rock contamination within the Kyiv industrial agglomeration influenced by Chernobyl fallout, in Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham, UK, September 21–27, 1997, Vol. 1, Problems, Processes and Management, PA.A.Balkema, Rotterdam, Brookfield, pp. 171–174.

    Google Scholar 

  • Shestopalov, V.M., V.A. Kashparov, Yu. A. Ivanov, and I.M. Bogdevich, 2001. Migration pathways of “Chernobyl” radionuclides in landscapes. 15 years of Chernobyl Catastrophe. Experience of overcoming. Chernobylinterinform, Kyiv, pp. 96–117.

    Google Scholar 

  • Shestopalov, V.M. (ed), 2001. Water Exchange in Hydrogeological Structures of Ukraine. Water Exchange and Chernobyl Catastrophe, Vol. 1, 2, Institute of Geological Sciences, Radioenvironmental Center, Kyiv, 630 p. (In Russian).

    Google Scholar 

  • Shestopalov, V.M. (ed), 2002. Chernobyl Disaster and Groundwater, A.A.Balkema/ Lisse/Abingdon/Exton(Pa)/Tokyo, 289 p.

    Google Scholar 

  • Shtengelov, E.S., 1979. Some questions of Pliocene-Quaternary separation of continental crust, Bull. Moscow Soc. Nat. Invest., Geol. Sect., 262, 3–14.

    Google Scholar 

  • Shuford, J.W., D.D. Fritton, and D.E. Baker, 1977. Nitrate nitrogen and chloride movement through undisturbed field, Soil J. Environ. Qual., 6, 255–259.

    Article  Google Scholar 

  • Vrba, J., and A. Zaporozec, 1994. Guidebook on mapping groundwater vulnerability, Int. Assoc. Hydrogeol., 16.

    Google Scholar 

  • Zektser, I.S., 2001. Groundwater as a Component of the Environment, Nauchnyi Mir, Moscow, 327 p. (In Russian)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Shestopalov, V.M., Rudenko, Y.F., Bohuslavsky, A.S., Bublias, V.N. (2006). CHERNOBYL-BORN RADIONUCLIDES: GROUNDWATER PROTECTABILITY WITHRESPECT TO PREFERENTIAL FLOW ZONES. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_12

Download citation

Publish with us

Policies and ethics