Skip to main content

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 23))

To some, industrial ecology is the field that seeks to understand and replicate the dense network of by-product exchanges found in the famous industrial district of Kalundborg, Denmark. To others, it is the attempt to look to natural systems for models for industrial design and practice. To still others, it is nearly any effort to mesh environmental concerns with production and consumption.

A handbook on input-output analysis needs more clarity than this, both to provide context for the individual chapters and to provide an introduction to those less familiar with industrial ecology. This opening chapter will provide such an introduction by first reviewing the goals, history, elements and state of development of the field. It will then examine six dimensions of industrial ecology in terms of their potential relationship to input-output analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D. et al. (1997). Resource flows: The material basis of industrial economies. Washington, DC: World Resources Institute.

    Google Scholar 

  • Alcamo, J. G., Kreileman, J. J., Krol, M. S., & Zuidema, G. (1994). Modeling the global society? biosphere? climate systems part 1: Model description and testing. Water, Air and Soil Pollution, 76, 1–35.

    Article  CAS  Google Scholar 

  • Allenby, B. (1999). Industrial ecology: Policy framework and implementation. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Allenby, B. R., & Cooper, J. (1994). Understanding industrial ecology from a biological systems perspective. Total Quality Environmental Management (Spring), 343–354.

    Google Scholar 

  • Andrews, C. J. (2000). Building a micro foundation for industrial ecology. Journal of Industrial Ecology, 4(3), 35–52.

    Article  CAS  Google Scholar 

  • Ausubel, J. H. (1996). Can technology spare the Earth?. American Scientist, 84(2), 166–178.

    Google Scholar 

  • Ausubel, J. H., & Langford, H. D. (1997). Technological trajectories and the human environment. Washington, DC: National Academy Press.

    Google Scholar 

  • Ayres, R. U., & Kneese, A. V. (1969). Production, consumption & externalities. American Economic Review, 59(3), 282–296.

    Google Scholar 

  • Ayres, R., & Rod, S. (1986). Patterns of Pollution in the Hudson-Raritan Basin. Environment, 28(4), 14–43.

    Google Scholar 

  • Ayres, R., Schlesinger, W. H., & Socolow, R. H. (1994). Human impacts on the carbon and nitrogen cycles. Printed in R. H. Socolow, C. Andrews, F. Berkhout, & V. Thomas (Eds.), Industrial ecology and global change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bailey, R., Allen, J. K., & Bras, B. (2004a). Applying ecological input-output flow analysis to material flows in industrial systems: Part I: Tracing flows. Journal of Industrial Ecology, 8(1–2), 45–68(24).

    Article  Google Scholar 

  • Bailey, R., Bras, B., & Allen, J. K. (2004b). Applying ecological input-output flow analysis to material flows in industrial systems: Part II: Flow metrics. Journal of Industrial Ecology, 8(1–2), 69–91(23).

    Article  Google Scholar 

  • Björklund, A., Bjuggren, C., Dalemo, M., & Sonesson, U. (1999). Planning biodegradable waste management in Stockholm. Journal of Industrial Ecology, 3(4), 43–58.

    Article  Google Scholar 

  • Bohe, R. A. (2003). Why we need a better understanding of ecology and environmental dynamics in industrial ecology (on-line letter). Journal of Industrial Ecology, 7(1).

    Google Scholar 

  • Boon, J. E., Isaacs, J. A., & Gupta, S. M. (2003). End-of-life infrastructure economics for “clean vehicles” in the United States. Journal of Industrial Ecology, 7(1), 25–45.

    Article  Google Scholar 

  • Bringezu, S., Schütz, H., & Moll, S. (2003). Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. Journal of Industrial Ecology, 7(2), 43–64.

    Article  Google Scholar 

  • Carnahan, J. V., & Thurston, D. L. (1998). Trade-off modeling for product and manufacturing process design for the environment. Journal of Industrial Ecology, 2(1), 79–93.

    Article  Google Scholar 

  • Chertow, M. (2000). The IPAT equation and its variants: Changing views of technology and environmental impact. Journal of Industrial Ecology, 4(4), 13–30.

    Article  Google Scholar 

  • Cleveland, C. J., & Ruth, M. (1998). Indicators of dematerialization and the materials intensity of use. Journal of Industrial Ecology, 2(3), 15–50.

    Article  Google Scholar 

  • Clift, R., Birmingham, K., & Lofsted, R. (1995). Environmental perspectives and environmental assessment. Printed in Guerrier (Ed.), Values and the environment: A social science perspective. New York: Wiley.

    Google Scholar 

  • Daniels, P. L., & Moore, S. (2001). Approaches for quantifying the metabolism of physical economies part I: Methodological overview. Journal of Industrial Ecology, 5(4), 69–93.

    Article  Google Scholar 

  • DeSimone, L. D., Popoff, F., & WBCSD (1997). Eco-efficiency: The business link to sustainable development. Cambridge, MA: MIT Press.

    Google Scholar 

  • Diwekar, U., & Small, M. J. (1998). Industrial ecology and process optimization. Journal of Industrial Ecology, 2(3), 11–14.

    Article  Google Scholar 

  • Duchin, F. (1992). Industrial input-output analysis: Implications for industrial ecology. PNAS, 89(3), 851–855.

    Article  CAS  Google Scholar 

  • Duchin, F. (1994a). The future of the environment: Ecological economics and technological change. New York: Oxford University Press.

    Google Scholar 

  • Duchin, F. (1994b). Input-output analysis and industrial ecology. Printed in B. R. Allenby, & D. J. Richard (Eds.), The greening of industrial ecosystems (pp. 61–68). Washington, DC: National Academy Press.

    Google Scholar 

  • Duchin, F. (1998). Structural economics: Measuring change in technology, lifestyes, and the environment. Washington, DC: Island Press.

    Google Scholar 

  • Duchin, F. (2004). Input-output economics and material flows. Troy, NY: Rensselaer Polytechnic Institute.

    Google Scholar 

  • Duchin, F., & Szald, D. (1985). A dynamic input-output model with assured positive output. Metroeconomica, 37, 269–282.

    Google Scholar 

  • Ehrenfeld, J. (2000). Industrial ecology: Paradigm shift or normal science?. American Behavioral Scientist, 44(2), 229–244.

    Google Scholar 

  • Ehrenfeld, J. R. (2004). Can industrial ecology be the “science of sustainability”?. Journal of Industrial Ecology, 8(1–2), 1–3(3).

    Article  Google Scholar 

  • Ehrenfield, J. R., & Gertler, N. (1997). Industrial ecology in practice: The evolution of interdependence at Kalundborg. Journal of Industrial Ecology, 1(1), 67–79.

    Article  Google Scholar 

  • Erkman, S. (1997). Industrial ecology: An historical view. Journal of Cleaner Production, 5(1–2), 1–10.

    Article  Google Scholar 

  • Farla, J. C. M., & Blok, K. (2000). Energy efficiency and structural change in the Netherlands, 1980–1995: Influence of energy efficiency, dematerialization, and economic structure on national energy consumption. Journal of Industrial Ecology, 4(1), 93–118.

    Article  Google Scholar 

  • Fischer-Kowalski, M. (1998). Society's metabolism: The intellectual history of materials flow analysis, part I: 1860–1970. Journal of Industrial Ecology, 2(1), 61–78.

    Article  Google Scholar 

  • Fischer-Kowalski, M., & Hüttler, W. (1998). Society's metabolism: The intellectual history of materials flow analysis, part II: 1970–1998u Journal of Industrial Ecology, 2(4), 107–135.

    Article  Google Scholar 

  • Frosch, R., & Gallopoulos, N. (1989). Strategies for manufacturing. Scientific American, 261(3), 94–102.

    Article  Google Scholar 

  • Fussler, C., & James, P. (1996). Driving eco-innovation: A breakthrough discipline for innovation and sustainability. London/Washington, DC: Pitman.

    Google Scholar 

  • Graedel, T. E. (2000). The evolution of industrial ecology. Environmental Science & Technology, 34(1), 28A–31A.

    Article  CAS  Google Scholar 

  • Graedel, T. E., & Allenby, B. R. (1995). Industrial ecology (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Graedel, T. E., & Allenby, B. R. (1998). Industrial ecology and the automobile. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Graedel, T. E., & Allenby, B. R. (2003). Industrial ecology (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Grübler, A. (1998). Technology and global change. New York: Cambridge University Press.

    Google Scholar 

  • Guide, D. V., & van Wassenhove, L. N. (2004). Special issue: Supply chain management. California Management Review, 46(2).

    Google Scholar 

  • Guile, B., & Cohon, J. (1997). Sorting out a service-based economy. Printed in M. R. Chertow & D. C. Esty (Eds.), Thinking ecologicallly: The next generation of environmental policy. New Haven, CT: Yale University Press.

    Google Scholar 

  • Guinee, J. B. (2002). Handbook on life cycle assessment: Operational guide to the ISO standards. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Hansen, E., & Lassen, C. (2002). Experience with the use of substance flow analysis in Denmark. Journal of Industrial Ecology, 6(3), 201–219.

    Article  CAS  Google Scholar 

  • Hertwich, E. (2005). Consumption and industrial ecology. Journal of Industrial Ecology, 9(1–2).

    Google Scholar 

  • Hoffren, J., Luukkanen, J., & Kaivo-oja, J. (2000). Decomposition analysis of Finnish material flows: 1960∙996. Journal of Industrial Ecology, 4(4), 105–126.

    Article  CAS  Google Scholar 

  • Huesemann, M. (2003). Recognizing the limits of environmental science and technology. Environmental Science and Technology, 37(13), 259A–261A.

    Article  CAS  Google Scholar 

  • Jackson, T. (1999). Integrated product policy, a report for the European Commission DGXI, and Product Policy in Europe by Frans Oosterhuis, Freider Rubik, and Gerd Scholl. Journal of Industrial Ecology, 3(2–3), 181–182.

    Article  Google Scholar 

  • Jelinski, L., Graedel, T., Laudise, R., McCall, D., & Patel, C. (1992). Industrial ecology: Concepts and approaches. PNAS, 89, 793–797.

    Article  CAS  Google Scholar 

  • Joshi, S. (1999). Product environmental life-cycle assessment using input-output techniques. Journal of Industrial Ecology, 3(2–3), 95–120.

    Article  CAS  Google Scholar 

  • Kay, J. (2002). On complexity theory, exergy, and industrial ecology. Printed in C. J. Kibert, J. Sendzimir, & G. B. Guy (Eds.), Construction ecology: Nature as the basis for green buildings. London/New York: Spon.

    Google Scholar 

  • Keoleian, G. A., Kar, K., Manion, M. M., & Bulkley, J. W. (1997). Industrial ecology of the automobile: A life cycle perspective. Warrendale, PA: Society of Automotive Engineers (SAE).

    Google Scholar 

  • Kneese, A. V., Ayres, R. U, & D'Arge, R. C. (1970). Economics and the environment: A materials balance approach. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Konijn, P., de Boer, S., & van Dalen, J. (1997). Input-output analysis of material flows with application to iron, steel and zinc, Structural Change and Economic Dynamics, 8(1), 129–153.

    Article  Google Scholar 

  • Laudise, R. A., & Taylor-Smith, R. E. (1998). Lucent industrial ecology faculty fellowship program: Accomplishments, lessons, and prospects. Journal of Industrial Ecology, 2(4), 15–28.

    Article  Google Scholar 

  • Lave, L. B., Cobras-Flores, E., Hendrikson, C, & McMichael, F. (1995). Using input-output analysis to estimate economy wide discharges. Environmental Science & Technology, 29(9), 420–426.

    Article  Google Scholar 

  • Lenzen, M. (2000). Errors in conventional and input-output-based life-cycle inventories. Journal of Industrial Ecology, 4(4), 127–148.

    Article  Google Scholar 

  • Leontief, W. (1936). Quantitative input-output analysis in the economic system of the United States. Review of Economics and Statistics, 18(3), 105–125.

    Article  Google Scholar 

  • Leontief, W. (1970a). The dynamic inverse. Printed in A. Carter & A. Brody (Eds.), Contributions to input-output analysis (pp. 17–46). Amsterdam: North-Holland.

    Google Scholar 

  • Leontief, W. (1970b). Environmental repercussions and the economic structure: An inputoutput approach. Review of Economics and Statistics, 52(3), 262–271.

    Article  Google Scholar 

  • Lifset, R. (1993). Take it back: Extended producer responsibility as a form of incentive-based policy. Journal of Resource Management and Technology, 21(4), 163–175.

    Google Scholar 

  • Lifset, R. (1998). Taking stock and improving flow. Journal of Industrial Ecology, 2(1), 1–2.

    Article  Google Scholar 

  • Lifset, R. (2004). Probing metabolism. Journal of Industrial Ecology, 8(3), 1–3.

    Article  Google Scholar 

  • Lifset, R., & Graedel, T. E. (2002). Industrial ecology: Goals and definitions. Printed in R. Ayres & L. Ayres (Eds.), Handbook of industrial ecology (pp. 3–15). Cheltenham: Edward Elgar.

    Google Scholar 

  • Lin, X., & Polenske, K. R. (1998). Input — output modeling of production processes for business management. Structural Change and Economic Dynamics, 9(2), 205–226.

    Article  Google Scholar 

  • Lloyd, S. M., & Lave, L. B. (2003). Life cycle economic and environmental implications of using nano-composites in automobiles. Environmental Science & Technology, 37(15), 3458–3466.

    Article  CAS  Google Scholar 

  • Marstrander, R., Brattebø, H., Røine, K., & Støren, S. (1999). Teaching industrial ecology to graduate students: Experiences at the Norwegian University of Science and Technology. Journal of Industrial Ecology, 3(4), 117–130.

    Article  Google Scholar 

  • Matthews, H. S., & Hendrickson, C. T. (2002). The economic and environmental implications of centralized stock keeping. Journal of Industrial Ecology, 6(2), 71–81.

    Article  Google Scholar 

  • Matthews, H. S., & Small, M. J. (2000). Extending the boundaries of life-cycle assessment through environmental economic input-output models. Journal of Industrial Ecology, 4(3), 7–10.

    Article  Google Scholar 

  • Moriguchi, Y., Hondo, Y., & Shimizu, H. (1993). Analyzing the life cycle impact of cars: The case of CO2. Industrial and Environment, 16(1–2), 42–45.

    Google Scholar 

  • Nakamura, S., & Kondo, Y. (2002). Input-output analysis of waste management. Journal of Industrial Ecology, 6(1), 39–64.

    Article  Google Scholar 

  • Nakicenovic, N. (Ed.) (1997). Freeing energy from carbon. In technological trajectories and the human environment (Summer 1996 issue of Daedalus, Ed.). Washington, DC: National Academy Press.

    Google Scholar 

  • Nash, J., & Ehrenfeld, J. (1997). Codes of environmental management practice. Annual Review of Energy and the Environment, 22, 487–535.

    Article  Google Scholar 

  • New York Academy of Sciences (2002). Harbor project: Industrial ecology, pollution prevention and the New York/New Jersey Harbor. Retrieved July 25, 2002, from http://www.nyas. org/policy/harbor/highlights.html

  • Norberg-Bohm, V. (2000). Innovation effects of environmental policy instruments. Vols. 5 and 6, by Paul Klemmer, Ulrike Lehr, and Klaus Lobbe, Policies for cleaner technology: A new agenda for government and industry, by Anthony Clayton, Graham Spinardia, and Robin Williams and Adoption of environmental innovations: The dynamics of innovation as interplay between business competence, environmental orientation and network involvement, by Koos Van Dijken. Journal of Industrial Ecology, 4(3), 123–126.

    Google Scholar 

  • OECD (1998). Eco-efficiency. Paris: Organisation for economic cooperation and development. Paris: OECD.

    Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD) (1996). Extended producer responsibility in the OECD area (No. OCDE/GD(96)48). Paris: OECD.

    Google Scholar 

  • Preston, J. (1997). Technology innovation and environmental progress. Printed in M. Chertow & D. Esty (Eds.), Thinking ecologically, the next generation of environmental policy. New Haven, CT: Yale University Press.

    Google Scholar 

  • Raynolds, M., Fraser, R., & Checkel, D. (2000). The relative mass-energy-economic (RMEE) method for system boundary selection, Part I. International Journal of Life-Cycle Assessment, 5(1), 37–46.

    Article  Google Scholar 

  • Reijnders, L. (1998). The factor ‘X’ debate: Setting targets for eco-efficiency. Journal of Industrial Ecology, 2(1), 13–22.

    Article  Google Scholar 

  • Reiskin, E. D., White, A. L., Johnson, J. K., & Votta, T. J. (1999). Servicizing the chemical supply chain. Journal of Industrial Ecology, 3(2–3), 19–31.

    Article  Google Scholar 

  • Rosen, C. M., Bercovitz, J., & Beckman, S. (2000). Environmental supply-chain management in the computer industry: A transaction cost economics perspective. Journal of Industrial Ecology, 4(4), 83–104.

    Article  Google Scholar 

  • Rosen, C. M., Beckman, S. L., & Bercovitz, J. (2002). The role of voluntary industry standards in environmental supply-chain management: An institutional economics perspective. Journal of Industrial Ecology, 6(3), 103–123.

    Article  Google Scholar 

  • Roundtable on the industrial ecology of pulp and paper (1997). Journal of Industrial Ecology, 1(3), 87–114.

    Google Scholar 

  • Ruth, M. (1996). Evolutionary economics at the crossroads of biology and physics. Journal of Social & Evolutionary Systems, 19(2), 125.

    Article  Google Scholar 

  • Ruth, M., & Harrington, T. Jr. (1997). Dynamics of material and energy use in U.S. pulp and paper manufacturing. Journal of Industrial Ecology, 1(3), 147–168.

    Article  Google Scholar 

  • Schmidheiny, S. (1992). Changing course: A global business perspective on development and the environment. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M. et al. (2003). Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 7 (3–4), 117–146(130).

    Article  CAS  Google Scholar 

  • Socolow, R. H. (1994). Six perspectives on industrial ecology. Printed in R. H. Socolow, C. Andrews, F. Berkhout & V. Thomas (Eds.), Industrial ecology and global change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Socolow, R. H. (1999). Nitrogen management and the future of food: Lessons from the management of energy and carbon. PNAS, 96(11), 6001–6008.

    Article  CAS  Google Scholar 

  • Socolow, R. H., Andrews, C., Berkhout, F., & Thomas, V. (1994). Industrial ecology and global change. Cambridge (UK)/New York: Cambridge University Press.

    Google Scholar 

  • Stigliani, W., Jaffe, P., & Anderberg, S. (1993). Heavy metal pollution in the Rhine Basin. Environmental Science & Technology, 27(5), 786.

    Article  CAS  Google Scholar 

  • Suh, S. (2005). Theory of materials and energy flow analysis in ecology and economics. Ecological Modelling, 189, 251–269.

    Article  Google Scholar 

  • Suh, S., & Huppes, G. (2005). Methods for life cycle inventory of a product. Journal of Cleaner Production, 13(7), 687–697.

    Article  Google Scholar 

  • Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G. et al. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science & Technology, 38(3), 657–664.

    Article  CAS  Google Scholar 

  • Tibbs, H. (1992). Industrial ecology: An environmental agenda for industry. Whole earth review, Winter, 4.

    Google Scholar 

  • Tukker, A., Kleijn, R., Van Oers, L., & Smeets, E. R. W. (1997). Combining SFA and LCA: The Swedish PVC analysis. Journal of Industrial Ecology, 1(4), 93–116.

    Article  CAS  Google Scholar 

  • Van der Voet, E., Guinée, J., & Udo de Haes, H. A. (2000). Heavy metals: A problem solved? Methods and models to evaluate policy strategies for heavy metals. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • van der Voet, E., van Oers, L., & Nikolic, I. (2005). Dematerialization: Not just a matter of weight. Journal of Industrial Ecology, 8(4).

    Google Scholar 

  • von Weizsäcker, E., Lovins, A. B., & Lovins, L. H. (1997). Factor four: Doubling wealth, halving resource use. London: Earthscan.

    Google Scholar 

  • Wells, P., & Orsato, R. (2005). Redesigning the industrial ecology of the automobile. Journal of Industrial Ecology, 9(3).

    Google Scholar 

  • Wernick, I. K., & Ausubel, J. H. (1997). Research needs for industrial ecology: Lawrence Liver-more National Laboratory for the U.S. Department of Energy.

    Google Scholar 

  • Wernick, I. K., Waggoner, P. E., & Ausubel, J. H. (1997). Searching for leverage to conserve forests: The industrial ecology of wood products in the United States. Journal of Industrial Ecology, 1(3), 125–145.

    Article  Google Scholar 

  • White, P. (2003). Design + environment: A global guide to designing greener goods by Helen Lewis and John Gertsakis, with Tim Grant, Nicolla Morelli and Andrew Sweatman; How to do ecodesign? A guide to environmentally and socially sound design, edited by the German Federal Environmental Agency, Ursula Tischner, Eva Schmincke, Frieder Rubik, Martin Prõsler, in collaboration with Bernhard Deitz, Sandra Maßelter and Bernd Hirschl; Ecodesign PILOT: Product investigation, learning and optimization tool for sustainable product development, by Wolfgang Wimmer and Rainer Züst. Journal of Industrial Ecology, 7(1), 139–142.

    Google Scholar 

  • White, R. (1994). Preface. Printed in B. R. Allenby & D. Richards (Eds.), The greening of industrial ecosystems. Washington, DC: National Academy Press.

    Google Scholar 

  • Wrisberg, N., & Clift, R. (1999). Industrial ecology in Europe: The CHAINET concerted action. Journal of Industrial Ecology, 3(4), 8–9.

    Article  Google Scholar 

  • York, R., Rosa, E., & Dietz, T. (2005). The ecological footprint intensity of national economies. Journal of Industrial Ecology, 8(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lifset, R. (2009). Industrial Ecology in the Age of Input-Output Analysis. In: Suh, S. (eds) Handbook of Input-Output Economics in Industrial Ecology. Eco-Efficiency in Industry and Science, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5737-3_1

Download citation

Publish with us

Policies and ethics