Skip to main content

BACTERIA AS BIOLOGICAL CONTROL AGENTS FOR INSECTS: ECONOMICS, ENGINEERING, AND ENVIRONMENTAL SAFETY

  • Conference paper
Novel Biotechnologies for Biocontrol Agent Enhancement and Management

Part of the book series: NATO Security through Science Series ((NASTA))

Abstract

Pathogens of insects have been under evaluation as biological control agents for more than a century. With few exceptions, they are not effective as classical biological control agents. Moreover, even as insecticides, only Bacillus thuringiensis (Bt) has been a commercial success. Bt’s success, in essence, is due to its ease of mass production by fermentation on inexpensive media, which facilitated commercialization. Viruses, fungi, and protozoa are used in only a few niche markets, and thus have largely failed as microbial insecticides, and will continue to fail until more efficacious mass production methods are developed. Despite these failures, research on insect pathogens led to the development of transgenic insect-tolerant Bt crops, arguably the most important advance in pest control technology of the latter half of the 20th century. Numerous laboratory and field studies have shown that these crops are cost-effective and much safer than synthetic chemical insecticides for the environment and non-target organisms. The high specificity of Bt crops provides a new cornerstone for biological control and sustainable agriculture that will enable both to expand during this century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. A. Federici, in Handbook of Biological Control, edited by T. S. Bellows and T. W. Fisher (Academic Press, San Diego, 1999), pp 517–548.

    Google Scholar 

  2. F. Moscardi, Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44, 257–289 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. R. E. Balch and F. T. Bird, A disease of the European spruce sawfly, Gilpinia hercyniae [Htg.] and its place in natural control. Sci. Agricult. 25, 65–80.

    Google Scholar 

  4. R. M. Weseloh, Entomophaga maimaiga (Zygomycetes; Entomophthorales) resting spores and biological control of the gypsy moth, Lymantira dispar (Lepidoptera; Lymantriidae). Environ. Entomol. 28, 1162–1171 (1999).

    Google Scholar 

  5. V. M. Stern and B. A. Federici, Granulosis virus: Biological control of the grapeleaf skeletonizer. Calif. Agricult. 44, 21–22 (1990).

    Google Scholar 

  6. B. A. Federici, Insecticidal bacteria: An overwhelming success for invertebrate pathology. J. Invertebr. Pathol. 89, 30–38.

    Google Scholar 

  7. M. G. Feng, T. J. Poprawski, and G. G. Khachatourians, Production, formulation and application of the entomophathogenic fungus Beauveria bassiana for insect control. Biocontr. Sci. Technol. 4, 3–34 (1994).

    Article  Google Scholar 

  8. T. R. Glare and M. O’Callaghan. Bacillus thuringiensis: Biology, Ecology and Safety (Wiley, Chichester, UK, 2000).

    Google Scholar 

  9. B. A. Federici, in Handbook of Biological Control, edited by T. S. Bellows and T. W. Fisher (Academic Press, San Diego, CA, 1999), pp. 575–593.

    Google Scholar 

  10. E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Bacillus thuringiensis and its pesticidal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).

    PubMed  CAS  Google Scholar 

  11. J.-F. Charles, C. Nielsen-LeRoux, and A. Delecluse, Bacillus sphaericus toxins: Molecular biology and mode of action. Ann. Rev. Entomol. 41, 451–472 (1996).

    Article  CAS  Google Scholar 

  12. T. A. Jackson, J. F. Pearson, M. O. O’Callaghan, H. K. Mahanty, and M. J. Willocks, in Use of Pathogens in Scarab Pest Management, edited by T. A. Jackson and T. R. Glare (Andover, Intercept. Andover, 1992) pp. 191–198.

    Google Scholar 

  13. R. de Maagd, A. Bravo, C. Berry, N. Crickmore, and H. E. Schnepf, Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Ann. Rev. Genet. 37, 409–433 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. H. Agaisse and D. Lereclus, STAB-SD: A Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol. Microbiol. 20, 633–643 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. H.-W. Park, B. Ge, L. S. Bauer, and B. A. Federici, Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl. Environ. Microbiol. 64, 3932–3938 (1998).

    PubMed  CAS  Google Scholar 

  16. B. A. Federici, H.-W. Park, D. K. Bideshi, M. C. Wirth, and J. J. Johnson, Recombinant bacteria for mosquito control. J. Exp. Biol. 206, 3877–3885 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. H.-W. Park, D. K. Bideshi, M. C. Wirth, J. J. Johnson, W. E. Walton, and B. A. Federici, Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile Virus. Am. J. Trop. Med. Hyg. 72, 732–738 (2005).

    PubMed  CAS  Google Scholar 

  18. J. S. Griffiths, S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy, H. Morris, P. S. Cremer, A. Dell, M. J. Adang, and R. V. Aroian, Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 5711, 922–925 (2005).

    Article  CAS  Google Scholar 

  19. F. S. Betz, S. F. Forsyth, and W. E. Stewart, in Safety if Microbial Insecticides, edited by M. Laird, L. A. Lacey, and E. W. Davidson (CRC Press, Boca Raton, FL, 1990), pp. 3–10.

    Google Scholar 

  20. B. A. Federici, Effects of Bt on non-target organisms. J. New Seeds 5, 11–30 (2003).

    Article  Google Scholar 

  21. K. Petrie, M. Thomas, and E. Broadbent, Symptom complaints following aerial spraying with the biological insecticide Foray 48B. New Zealand Med. J. 116, 1–7 (2003).

    Google Scholar 

  22. V. de Amorim, B. Whittome, B. Shore, and D. B. Levin, Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B. Appl. Environ. Microbiol. 67, 1035–1043 (2001).

    Article  Google Scholar 

  23. W. R. Snodgrass, in Handbook of Pesticide Toxicology, edited by R. Krieger (Academic Press, San Diego, CA, 2001), pp. 589–602.

    Google Scholar 

  24. G. M. Calvert, W. T. Sanderson, M. Barnett, J. M. Blondell, and L. N. Mehler, in Handbook of Pesticide Toxicology, edited by R. Krieger (Academic Press, San Diego, CA, 2001), pp. 603–641.

    Google Scholar 

  25. J. P. Siegel, The mammalian safety of Bacillus thuringiensis-based insecticides. J. Invertebr. Pathol. 77, 13–21 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. F. S. Betz, B. G. Hammond, and R. L. Fuchs, Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Reg. Tox. Pharmacol. 32, 156–173 (2000).

    Article  CAS  Google Scholar 

  27. A. Hilbeck, W. J. Moar, M. Pustai-Carey, A. Filippini, and F. Bigler, Toxicity of Bacillus thuringeinsis Cry1A(b) toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27, 1255–1263 (1998).

    CAS  Google Scholar 

  28. J. J. Losey, L. Raynor, and M. E. Cater, Transgenic pollen harms monarch larvae. Nature 399, 214 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. J. Romeis, A. Dutton, and F. Bigler, Bacillus thuringeinsis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae). J. Insect Physiol. 50, 175–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. M. K. Sears, R. L. Helmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Mattila, S. D. Siegfried, and G. P. Dively, Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA 98, 11937–11942 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. M. O’Callaghan, T. R. Glare, E. P. J. Burgess, and L. A. Malone. 2005. Effects of plants genetically modified for insect resistance on nontarget organisms. Annu. Rev. Entomol. 50, 271–292.

    Article  PubMed  CAS  Google Scholar 

  32. S. Naranjo, Long-term assessment of the effects of transgenic Bt cotton on the abundance of the nontarget natural enemy community. Environ. Entomol. 34, 1193–1210 (2005).

    Article  Google Scholar 

  33. M. E. A. Whitehouse, L. J. Wilson, and G. P. Fitt, A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).

    Article  Google Scholar 

  34. G. Head, W. Moar, M. Eubanks, B. Freeman, J. Ruberson, A. Hagerty, and S. Turnipseed, A multiyear, large-scale comparison of Arthropod populations on commercially managed Bt and non-Bt cotton fields. Environ. Entomol. 34, 1257–1266 (2005).

    Article  Google Scholar 

  35. G. P. Dively, Impact of transgenic VIP3A X Cry1Ab lepidopterna-resistant field corn on the nontarget arthropod community, Environ. Entomol. 34, 1267–1291 (2005).

    Article  Google Scholar 

  36. M. A. Bhatti, J. Duan, G. Head, C. Jiang, M. J. McKee, T. E. Nickson, C. L. Pilcher, and C. D. Pilcher, Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on ground dwelling invertebrates. Environ. Entomol. 34, 1325–1335 (2005).

    Article  Google Scholar 

  37. M. A. Bhatti, J. Duan, G. Head, C. Jiang, M. J. McKee, T. E. Nickson, C. L. Pilcher, and C. D. Pilcher, Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods, Environ. Entomol. 34, 1336–1345 (2005).

    Article  Google Scholar 

  38. D. A. Andow and A. Hilbeck, A science-based risk assessment for non-target effects of transgenic crops. Bioscience 54, 637–649 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Federici, B.A. (2007). BACTERIA AS BIOLOGICAL CONTROL AGENTS FOR INSECTS: ECONOMICS, ENGINEERING, AND ENVIRONMENTAL SAFETY. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_2

Download citation

Publish with us

Policies and ethics