Skip to main content

SELECTING, MONITORING, AND ENHANCING THE PERFORMANCE OF BACTERIAL BIOCONTROL AGENTS: PRINCIPLES, PITFALLS, AND PROGRESS

  • Conference paper
Novel Biotechnologies for Biocontrol Agent Enhancement and Management

Part of the book series: NATO Security through Science Series ((NASTA))

Abstract

Genetic resistance to root diseases of plants is rare, and agriculture controls these diseases through practices such as crop rotation and soil fumigation. However, plants have evolved a strategy of stimulating and supporting specific groups of antagonistic rhizosphere microorganisms as a defense against diseases caused by soilborne pathogens. Antibiotic production has a significant role in plant defense by many of these rhizobacteria. Information now is available about the genetics, biochemistry, and regulation of synthesis of some of the most commonly-produced antibiotics. Similarly, many genes that contribute to the ability of these bacteria to colonize roots have been identified. Studies of naturally suppressive soils have provided evidence of preferential interactions between plant hosts and protective populations, revealing the existence of functional diversity among otherwise almost indistinguishable strains. Here, we consider how this knowledge can be applied to aid in the selection of more effective biological control agents and the development of recombinant strains that may overcome impediments to inoculum preparation, formulation, and cost that currently limit commercial acceptance of highly promising candidate strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. J. Lugtenberg, L. Dekkers, and G. Bloemberg, Molecular determinants of rhizosphere colonization by Pseudomonas, Annu. Rev. Phytopathol. 39, 461–490 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. C. M. Liddell and J. L. Parke, Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil, Phytopathology 79, 1327–1332 (1989).

    Google Scholar 

  3. J. M. Raaijmakers and D. M. Weller, Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96, Appl. Environ. Microbiol. 67, 2545–2554 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. B. B. Landa, O. V. Mavrodi, J. M. Raaijmakers, B. B. McSpadden-Gardener, L. S. Thomashow, and D. M. Weller, Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens to colonize the roots of pea, Appl. Environ. Microbiol. 68, 3226–3237 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. B. B. Landa, O. V. Mavrodi, K. L. Schroeder, R. Allende-Molar, and D. M. Weller, Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture, FEMS Microbiol. Ecol. 55, 351–368 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. B. B. Landa, D. V. Mavrodi, L. S. Thomashow, and D. M. Weller, Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat, Phytopathology 93, 982–994 (2003).

    Article  CAS  Google Scholar 

  7. J. T. de Souza, D. M. Weller, and J. M. Raaijmakers, Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils, Phytopathology 93, 54–63 (2003).

    Article  Google Scholar 

  8. D. M. Weller, B. B. Landa, O. V. Mavrodi, K. L. Schroeder, L. De La Fuente, S. Blouin Bankhead, R. Allende Molar, R. F. Bonsall, D. V. Mavrodi, and L. S. Thomashow, Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots, Plant Biol., in press.

    Google Scholar 

  9. P. Lemanceau, T. Corberand, L. Gardan, X. Latour, G. Laguerre, J. M. Boeufgras, and C. Alabouvette, Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads, Appl. Environ. Microbiol. 61, 1004–1012 (1995).

    PubMed  CAS  Google Scholar 

  10. M. Bergsma-Vlami, M. E. Prins, and J. M. Raaijmakers, Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp., FEMS Microbiol. Ecol. 52, 59–69 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. C. Picard, E. Frascarioli, and M. Bosco, Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing rhizobacteria are differentially affected by the genotype of two maize inbred lines and their hybrid, FEMS Microbiol Ecol. 49, 207–215 (2004).

    Article  CAS  Google Scholar 

  12. L. De La Fuente, B. B. Landa, and D. M. Weller, Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens, Phytopathology 96, 751–762 (2006).

    Article  Google Scholar 

  13. R. Costa, J. Falcão Salles, G. Berg, and K. Smalla, Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants, Environ. Microbiol. 8, 2136–2149 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. F. Kamilova, S. Validov, T. Azarova, I. Mulders, and B. Lugtenberg, Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria, Environ. Microbiol. 7, 1809–1817 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. S. Validov, F. Kamilova, S. Qi, D. Stephan, J. J. Wang, N. Makarova, and B. Lugtenberg, Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate, J. Appl. Microbiol., in press.

    Google Scholar 

  16. F. Kamilova, L. V. Kravchenko, A. Shaposhnikov, T. Azarova, N. Makarova, and B. Lugtenberg, Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria, Mol. Plant-Microbe Interact. 19, 250–256 (2006).

    PubMed  CAS  Google Scholar 

  17. D. M. Weller, Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopathol. 26, 379–407 (1988).

    Article  Google Scholar 

  18. C. M. J. Pieterse, S. C. M. Van Wees, J. Ton, J. A. Van Pelt, and L. C. Van Loon, Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana, Plant Biol. 4, 535–544 (2002).

    Article  CAS  Google Scholar 

  19. J. M. Raaijmakers, M. Vlami, and J. T. de Souza, Antibiotic production by bacterial biocontrol agents, Antonie van Leeuwenhoek 81, 537–547 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. D. Haas and C. Keel, Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease, Annu. Rev. Phytopathol. 41, 117–153 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Raaijmakers, D. M. Weller, and L. S. Thomashow, Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63, 881–887 (1997).

    PubMed  CAS  Google Scholar 

  22. B. B. McSpadden Gardener, D. V. Mavrodi, L. S. Thomashow, and D. M. Weller, A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria, Phytopathology 91, 44–54 (2001).

    Article  CAS  Google Scholar 

  23. J. T. De Souza and J. M. Raaijmakers, Polymorphisms within the prnD and pltC genes from pyrrolnitrin- and pyoluteorin-producing Pseudomonas and Burkholderia spp., FEMS Microbiol. Ecol. 43, 21–34 (2003).

    Google Scholar 

  24. O. V. Mavrodi, D. V. Mavrodi, D. M. Weller, and L. S. Thomashow, The role of ptsP, orfT, and sss recombinase in root colonization by Pseudomonas fluorescens Q8r1-96, Appl. Environ. Microbiol. 72, 7111–7122 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. L. S. Thomashow, R. F. Bonsall, and D. M. Weller, Antibiotic production by soil and rhizosphere microbes in situ, in Manual of Environmental Microbiology, edited by C. J. Hurst (ASM Press, Washington, 2002), pp. 638–647.

    Google Scholar 

  26. J. M. Raaijmakers, M. Leeman M. M. P. Van Oorschot, I. Van der Sluis, B. Schippers, and P. A. H. M. Bakker, Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp., Phytopathology 85, 1075–1081 (1995).

    Article  Google Scholar 

  27. J. M. Raaijmakers and D. M. Weller, Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas in take-all decline soils, Mol. Plant-Microbe Interact. 11, 144–152 (1998).

    CAS  Google Scholar 

  28. A. Simon and E. H. Ridge, The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudomonads, J. Appl. Bacteriol. 37, 459–460 (1974).

    PubMed  CAS  Google Scholar 

  29. B. B. Landa, H. A. E. de Werd, B. B. McSpadden-Gardener, and D. M. Weller, Comparison of three methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere, Phytopathology 92, 129–137 (2002).

    Article  CAS  Google Scholar 

  30. L. De La Fuente, D. V. Mavrodi, B. B. Landa, L. S. Thomashow, and D. M. Weller, phlD-based genetic diversity and detection of genotypes of 2,4-diacetylpholorogucinol-producing Pseudomonas fluorescens, FEMS Microbiol. Ecol. 56, 64–78 (2006).

    Article  Google Scholar 

  31. S. Validov, O. Mavrodi, L. De La Fuente, A. Boronin, D. Weller, L. Thomashow, and D. Mavrodi, Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol. Lett. 242, 249–256 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. O. V. Mavrodi, D. V. Mavrodi, L. S. Thomashow, and D. M. Weller, Application of real-time PCR quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the plant rhizosphere, in International Plant Growth Promoting Rhizobacteria Workshop (May 20, 2006); available at http://www.ars.usda.gov/research/publications/ publications. htm?seq_no_115=199460.

    Google Scholar 

  33. I. T. Paulsen, C. Press, J. Ravel, D. Y. Kobayashi, G. S. A. Myers, D. V. Mavrodi, R. T. DeBoy, R. Seshadri, Q. Ren, R. Madupu, R. J. Dodson, A. S. Durkin, A. M. Brinkac, S. C. Daugherty, S. A. Sullivan, M. J. Rosovitz, M. L. Gwinn, L. Zhou, D. J. Schneider, S. W. Cartinhour, W. C. Nelson, J. Weidman, K. Watkins, K. Tran, H. Khouri, E. A. Pierson, L. S. Pierson, L. S. Thomashow, and J. E. Loper, Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5: Insights into the biological control of plant disease, Nature Biotechnol. 23, 873–878 (2005).

    Article  CAS  Google Scholar 

  34. L. S. Pierson III, V. D. Keppenne, and D. W. Wood, Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density, J. Bacteriol. 176, 3966–3974 (1994).

    PubMed  CAS  Google Scholar 

  35. D. W. Wood, F. Gong, M. M. Aykin, P. Williams, and L. S. Pierson III, N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression byPseudomonas aureofaciens 30-84 in the wheat rhizosphere, J. Bacteriol.179, 7663–7670 (1997).

    PubMed  CAS  Google Scholar 

  36. D. Haas, C. Blumer, and C. Keel, Biocontrol ability of fluorescent pseudomonads genetically dissected: Importance of positive feedback regulation. Curr. Opin. Biotechnol. 11, 290–297 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. U. Schnider-Keel, A. Seematter, M. Maurhofer, C. Blumer, B. Duffy, C. Gigot-Bonnefoy, C. Reimmann, R. Notz, G. Défago, D. Haas, and C. Keel, Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin, J. Bacteriol. 182, 1215–1225 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. A. Abbas, J. P. Morrissey, P. Carnicero Marquez, M. M. Sheehan, I. R. Delany, and F. O’Gara, Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113, J. Bacteriol. 184, 3008–3016 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. R. Notz, M. Maurhofer, S. Schnider-Keel, B. Duffy, D. Haas, and G. Défago, Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthetic gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere, Phytopathology 91, 873–881 (2001).

    Article  CAS  Google Scholar 

  40. B. K. Duffy and G. Défago, Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic synthesis, Phytopathology 87, 1250–1257 (1997).

    Article  CAS  Google Scholar 

  41. R. Notz, M. Maurhofer, H. Dubach, D. Haas, and G. Défago, Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol. 68, 2229–2235 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. M. P. Lutz, S. Wenger, M. Maurhofer, G. Défago, and B. Duffy, Signaling between bacterial and fungal biocontrol agents in a strain mixture, FEMS Microbiol. Ecol. 48, 447–455 (2004).

    Article  CAS  Google Scholar 

  43. M. Maurhofer, E. Baehler, R. Notz, V. Martinez, and C. Keel, Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots, Appl. Environ. Microbiol. 70, 1990–1998 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. E. A. Pierson, D. W. Wood, J. A. Cannon, F. M. Blachere, and L. S. Pierson III, Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere, Mol. Plant-Microbe Interact. 11, 1078–1084 (1998).

    CAS  Google Scholar 

  45. J. E. Morello, E. A. Pierson, and L. S. Pierson III, Negative cross-communication among wheat rhizosphere bacteria: Effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30-84, Appl. Environ.Microbiol. 70, 3103–3109 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. J. E. Loper and S. E. Lindow, Reporter gene systems useful in evaluating in situ gene expression by soil- and plant-associated bacteria, in Manual of Environmental Microbiology, edited by C. J. Hurst (ASM Press, Washington, DC, 2002), pp. 627–637.

    Google Scholar 

  47. M. Bottiglieri and C. Keel, Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol, Appl. Environ. Microbiol. 72, 418–427 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. G. Pessi, C. Blumer, and D. Haas, lacZ fusions report gene expression, don’t they?, Microbiology 147, 1993–1995 (2002).

    Google Scholar 

  49. J. M. Raaijmakers, R. F. Bonsall, and D. M. Weller, Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat, Phytopathology 89, 470–475 (1999).

    Article  CAS  Google Scholar 

  50. R. F. Bonsall, D. M. Weller, and L. S. Thomashow, Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol. 63, 951–955 (1997).

    PubMed  CAS  Google Scholar 

  51. I. Chet, Cloning chitinases for plant protection: Hope or hazard for the environment, in Chitin Enzymology, edited by R. A. A. Muzzarelli (Plenum Press, New York, 1998), pp. 25–30.

    Google Scholar 

  52. K. Downing and J. A. Thomson, Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi, Can. J. Microbiol. 46, 363–369 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. L. Sundheim, A. R. Poplawsky, and A. H. Ellingboe, Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol. Molec. Plant Pathol. 33, 483–491 (1998).

    Article  Google Scholar 

  54. S. Koby, H. Schickler, I. Chet, and A. B. Oppenheim, The chitinase encoding Tn7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil, Gene 147, 81–83 (1994).

    Article  PubMed  CAS  Google Scholar 

  55. C. X. Wang, E. Knill, B. R. Glick, and G. Défago, Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities, Can. J. Microbiol. 46, 898–907 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. J. M. Ligon, D. S. Hill, P. E. Hammer, N. R. Torkewitz, D. Hofmann, H. J. Kempf, and K. H. van Pee, Natural products with antifungal activity from Pseudomonas biocontrol bacteria, Pest Management Sci. 56, 688–695 (2000).

    Article  CAS  Google Scholar 

  57. T. M. Timms-Wilson, R. J. Ellis, A. Renwick, D. J. Rhodes, D. V. Mavrodi, D. M. Weller, L. S. Thomashow, and M. M. Bailey, Chromosomal insertion of the phenazine biosynthetic pathway (phzABCDEFG) enhances the efficacy of damping off disease control by Pseudomonas fluorescens 54/96, Mol. Plant-Microbe Interact. 13, 1293–1300 (2000).

    PubMed  CAS  Google Scholar 

  58. B. W. Alsanius, M. Hultberg, and J.-E. Englund, Effect of lacZY-marking of the 2,4-diaceyl-phloroglucinol producing Pseudomonas fluorescens-strain 5-2/4 on its physiological performance and root colonization ability, Microbiol. Res. 157, 39–45 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. Z. Huang, R. F. Bonsall, D. V. Mavrodi, D. M. Weller, and L. S. Thomashow, Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves control of Rhizoctonia root rot and in situ antibiotic production, FEMS Microbiol. Ecol. 49, 243–251 (2004).

    Article  CAS  Google Scholar 

  60. D. M. Weller, unpublished data.

    Google Scholar 

  61. F. A. A. M. De Leij, E. J. Sutton, J. M. Whipps, J. S. Fenlon, and J. M. Lynch, Impact of a field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat, Appl. Environ. Microbiol. 61, 3443–3453 (1995).

    PubMed  Google Scholar 

  62. M. Mazzola, R. J. Cook, L. S. Thomashow, D. M. Weller, and L. S. Pierson III, Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats, Appl. Environ. Microbiol. 58, 2616–2624 (1992).

    PubMed  CAS  Google Scholar 

  63. S. Blouin-Bankhead, B. Landa, E. Lutton, D. M. Weller, and B. B. McSpadden Gardener, Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains, FEMS Microbiol. Ecol. 49, 307–318 (2004).

    Article  Google Scholar 

  64. A. Winding, S. J. Binnerup, and H. Pritchard, Non-target effects of bacterial biological control agents suppressing root pathogenic fungi, FEMS Microbiol. Ecol. 47, 129–141 (2004).

    Article  CAS  Google Scholar 

  65. Y. Moënne-Loccoz, H.-V. Tichy, A. O’Donnell, R. Simon, and F. O’Gara, Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings, Appl. Environ. Microbiol. 67, 3418–3425 (2001).

    Article  PubMed  Google Scholar 

  66. A. Natsch, C. Keel, N. Hebecker, E. Laasik, and G. Défago, Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots, FEMS Microbiol. Ecol. 27, 365–380 (1998).

    Article  CAS  Google Scholar 

  67. T. M. Timms-Wilson, K. Kilshaw, and M. J. Bailey, Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops, Plant and Soil 266, 57–67 (2004).

    Article  CAS  Google Scholar 

  68. L. Thirup, K. Johnsen, and A. Winding, Succession of indigenous Pseudomonas spp. and actinomycetes on barley roots affected by the antagonistic strain Pseudomonas fluorescens DR54 and the fungicide imazalil, Appl. Environ. Microbiol. 67, 1147–1153 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. D. C. M. Glandorf, P. Verheggen, T. Jansen, J.-W. Jorritsma, E. Smit, P. Leeflang, K. Wernars, L. S. Thomashow, E. Laureijs, J. E. Thomas-Oates, P. A. H. M. Bakker, and L. C. van Loon, Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of fieldgrown wheat, Appl. Environ. Microbiol. 67, 3371–3378 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. P. Leeflang, E. Smit, D. C. M. Glandorf, E. J. van Hannen, and K. Wernars, Effects of Pseudomonas putida WCS358r and its genetically modified phenazine producing derivative on the Fusarium population in a field experiment, as determined by 18S rDNA analysis, Soil Biol. Biochem. 34, 1021–1025 (2002).

    Article  CAS  Google Scholar 

  71. M. Viebahn, D. C. M. Glandorf, T. W. M. Ouwens, E. Smit, P. Leeflang, K. Wernars, L. S. Thomashow, L. C. van Loon, and P. A. H. M. Bakker, Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat, Appl. Environ. Microbiol. 69:3110–3118 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Thomashow, L.S., Weller, D.M., Mavrodi, O.V., Mavrodi, D.V. (2007). SELECTING, MONITORING, AND ENHANCING THE PERFORMANCE OF BACTERIAL BIOCONTROL AGENTS: PRINCIPLES, PITFALLS, AND PROGRESS. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_5

Download citation

Publish with us

Policies and ethics