Skip to main content

All standard theories and models of glass transition appear to be inadequate: missing some essential physics

  • Conference paper
Soft Matter under Exogenic Impacts

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

Many-molecule relaxation dynamics manifest themselves as general properties of the structural α-relaxation of glass-forming liquids independent of chemical composition and physical structure. An example is the Kohlrausch stretched exponential correlation function, ɸ(t) = exp[−(t/τ a )1−n], where 0≤n<1 is a convenient measure of the dispersion of the α-relaxation and the extent of the many-molecule relaxation dynamics. Plenty of the other general properties are shown to be either governed by n or correlated with n, and these empirical facts collectively indicate the importance of many-molecule relaxation dynamics. Practically, all standard theories and models of glass transition have not taken many-molecule relaxation dynamics adequately into consideration and it is unsurprising that they cannot explain some of the general properties. Furthermore, they only address the structural α-relaxation without considering the universal Johari-Goldstein secondary relaxation and the role it plays as the precursor of the many-molecule relaxation dynamics. Experiments have shown that the Johari-Goldstein relaxation has properties that mimic the Its relaxation time τ JG bears a general relation to τ α , which is governed by n. These general properties of the Johari-Goldstein relaxation indicate its fundamental importance, which is not recognized or considered in all standard theories and models. Thus, we conclude that all standard theories and models of glass transition are inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferry, J.D. (1980) Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York).

    Google Scholar 

  2. Adam, G., and Gibbs, J.H. (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139-146.

    Article  ADS  Google Scholar 

  3. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W. (2000) Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113-3157.

    Article  ADS  Google Scholar 

  4. Ngai, K.L. (2000) Dynamic and thermodynamic properties of glass-forming substances. J. Non-Cryst. Solids 275, 7-51.

    Article  ADS  Google Scholar 

  5. Ngai, K.L. (2003) J. Phys.:Condens. Matter 15, S1607-S1632.

    Article  ADS  Google Scholar 

  6. Johari G.P., and Goldstein, M. (1970) Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372-2388.

    Article  ADS  Google Scholar 

  7. Johari, G.P. (1973) Intrinsic mobility of molecular glasses. J. Chem. Phys. 58, 1766-1770.

    Article  ADS  Google Scholar 

  8. Johari, G.P., Power, G., and Vij, J.K. (2002) Localized relaxation’s strength and its mimicry of glasssoftening thermodynamics. J. Chem. Phys. 116, 5908-5909.

    Article  ADS  Google Scholar 

  9. Johari, G.P. (2002) Localized molecular motions of E-relaxation and its energy landscape. J. Non-Cryst. Solids 307-310, 313-325.

    ADS  Google Scholar 

  10. Ngai, K.L. (1998) Relation between secondary relaxations and the ▵-relaxations in glass-forming materials according to the coupling model. J. Chem. Phys. 109, 6982-6994.

    Article  ADS  Google Scholar 

  11. Ngai, K.L., and Paluch, M. (2004) Classification of secondary relaxation in glass-formers based on dynamic properties. J. Chem. Phys. 120, 857-873.

    Article  ADS  Google Scholar 

  12. Nemilov, S., and Johari, G.P. (2004) A mechanism for spontaneous relaxation of glass at room temperature. Philos. Mag. 83, 3117-3132; 84, 845-852 (2003).

    Article  ADS  Google Scholar 

  13. Ngai, K.L. (2004) Johari-Goldstein or primitive relaxation: Terminator of caged dynamics and precursor of ▵-relaxation. AIP Conf. Proceedings 708, 515-522. Third International Symposium on “Slow Dynamics in Complex Systems”. November 3-8. 2003. Sendai. Japan. M. Tokuyama and I. Oppenheim, Eds. (Am. Institute of Physics, New York).

    Google Scholar 

  14. Ngai, K.L., Casalini, R., Capaciolli, S., Paluch, M., and Roland, C.M. (2005) Do theories of the glass transition, in which the structural relaxation time does not define the dispersion of the structural relaxation, need revision? J. Phys. Chem. B 109, 17356-17360.

    Article  Google Scholar 

  15. Kohlrausch, R. (1847) Nachtrag uber die elastische Nachwirkung beim Cocon und Glasfaden, etc. Pogg. Ann. Phys. (III) 12, 393-399. Kohlrausch R. Theorie des electrischen Ruckstandes in der Leidener Flasche, Pogg. Ann. Phys. (1854) (IV) 1, 79-86.

    Google Scholar 

  16. Ngai, K.L., Magill, J.H., and Plazek, D.J. (2000) Flow, diffusion and crystallization of supercooled liquids: Revisited. J. Chem. Phys. 112, 1887-1892.

    Article  ADS  Google Scholar 

  17. Stickel, F., Fischer, E.W., and Richert, R. (1995) Dynamics of glass forming liquids.: I. Temperature derivative analysis of dielectric relaxation times. J. Chem. Phys. 102, 6251-6258.

    Article  ADS  Google Scholar 

  18. Ngai, K.L. (1999) Synergy of entropy and intermolecular coupling in supercooling liquids, J. Chem. Phys. 111, 3639-3645.

    Article  ADS  Google Scholar 

  19. Casalini, R., Ngai, K.L., and Roland, C.M. (2003) Connection between the high-frequency crossover of the temperature dependence of the relaxation time and the change of intermolecular coupling in glass-forming liquids. Phys. Rev. B 68, 014201, 1-5.

    Google Scholar 

  20. Ngai, K.L., and Rendell, R.W. (1997) Supercooled Liquids, Advances and Novel Applications, edited by Fourkas, J.T., Kivelson, D. Mohanty, U., and Nelson, K. eds., ACS Symposium Series Vol. 676, Chapter 4, 45-66 (Am. Chem. Soc., Washington, DC).

    Google Scholar 

  21. Ngai, K.L. (1994) Disorder Effects on Relaxational Properties, edited by R. Richert and A. Blumen, Chapter 3 (Springer Verlag, Berlin).

    Google Scholar 

  22. Ngai, K.L. (1996) A review of critical experimental facts in electrical relaxation and and ionic diffusion in ionically conducting glasses and melts. J. Non-Cryst. Solids 203, 232-245.

    Article  ADS  Google Scholar 

  23. Ngai, K.L., and Phillies, G.D.J. (1996) Polymer dynamics in solutions: Probe diffusion and viscosity. J. Chem. Phys. 105, 8385-8395.

    Article  ADS  Google Scholar 

  24. Einstein, A. (1905) Ann. Phys. 17, 549.

    Article  Google Scholar 

  25. Hamiltonian Dynamical Systems (1987) edited by R.S. MacKay and J.D. Meiss, (Adam Hilger, Bristol UK).

    Google Scholar 

  26. Ngai, K.L., and Rendell, R.W. (1991) Toward a theory of relaxation in correlated systems: diffusion in the phase space of a chaotic Hamiltonian. J. Non-Cryst. Solids 131-133, 233-237.

    Article  ADS  Google Scholar 

  27. Ngai, K.L., Peng, S.L., and Tsang, K.Y. (1992) Fractal phase space transport dynamics and relaxations in complex correlated systems. Physica A 191, 523-531.

    Article  ADS  Google Scholar 

  28. Tsang, K.Y., and Ngai, K.L. (1997) Relaxation in interacting arrays of oscillators. Phys. Rev. E 54, 3067-3071.

    Article  ADS  Google Scholar 

  29. Tsang, K.Y., and Ngai, K.L. (1997) Dynamics of relaxing systems subjected to nonlinear interactions. Phys. Rev. E 56, R17-R20.

    Article  ADS  Google Scholar 

  30. Ngai, K.L., and Tsang, K.Y. (1999) Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. Phys. Rev. E 60, 4511-4517.

    Article  ADS  Google Scholar 

  31. Ngai, K.L., and Rendell, R.W. (1990) The symmetric and fully distributed solution to a generalized dining philosophers problem: An analogue of the coupling theory of relaxations in complex correlated systems in relaxation, Complex systems and Related Topics, NATO ASI Series. Series B: Physics Vol. 222, edited by Ian A. Campbell and C. Giovannella, pp. 309-316 (Plenum, New York and London).

    Google Scholar 

  32. Schmidt-Rohr, K., and Spiess, H.W. (1991) Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR, Phys. Rev. Lett., 66, 3020-3023.

    Article  ADS  Google Scholar 

  33. For reviews of other works, see Böhmer, R., Chamberlin, R.V., Diezemann, G., Geil, B., Heuer, A., Hinze, G., Kuebler, S.C., Richert, R., Schiener, B., Sillescu, H., Spiess, H.W., Tracht, U., and Wilhelm, M. (1998) Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids 235-237, 1-9.

    Google Scholar 

  34. Reinsberg, S.A., Heuer, A., Doliwa, B., Zimmermann, H., and Spiess, H.W. (2002) Comparaitive study of the NMR length scale of dynamic heterogeneities of three different glassformers. J. Non-Cryst. Solids 307-310, 208-214.

    Article  ADS  Google Scholar 

  35. Ngai, K.L., Habasaki, J., León, C., and Rivera, A. (2005) Comparison of dynamics of ions in ionically conducting materials and dynamics of glass-forming substances: Remarkable similarities. Z. Phys. Chem. 219, 47-70.

    Google Scholar 

  36. Ngai, K.L. (2004) Why the fast relaxation in the picosecond to nanosecond time range can sense the glass transition. Philos. Mag. 84, 1341-1353.

    Article  ADS  Google Scholar 

  37. Ngai, K.L. (2005) Do theories of glass transition that address only the▵-relaxation need a new paradigm? J. Non-Cryst. Solids 351, 2635-2643.

    Article  ADS  Google Scholar 

  38. Roland, C.M., Schroeder, M.J., Fontanella, J.J., and Ngai, K.L. (2004) Evolution of the dynamics in 1,4-polyisoprene from a nearly constant loss to a Johari-Goldstein E-relaxation to the D -relaxation. Macromolecules 37, 2630-2635.

    Article  ADS  Google Scholar 

  39. Brand, R., Lunkenheimer, P., and Loidl, A. (2002) Relaxation dynamics in plastic crystals. J. Chem. Phys. 116, 10386-10401.

    Article  ADS  Google Scholar 

  40. Pelletier, J.M., Van de Moortele, B., and Lu, I.R. (2002) Viscoelasticity and viscosity of Pd-Ni-Cu-P bulk metallic glasses. Mater. Sci. Eng. A 336, 190-195.

    Article  Google Scholar 

  41. Rosner, P., Samwer, K., and Lunkenheimer, P. (2004) Indications for an “excess wing” in metallic glasses from the mechanical loss modulus in Zr65Al7.5Cu27.5. Europhys. Lett. 68, 226.

    Article  ADS  Google Scholar 

  42. León, C., and Ngai, K.L. (1999) Rapidity of the change of the Kohlrausch exponent of the▵-relaxation of glass-forming liquids at TB or TE and consequences. J. Phys. Chem. B 103, 4045-4051.

    Article  Google Scholar 

  43. Böhmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J. (1993) Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201-4209.

    Article  ADS  Google Scholar 

  44. Ngai, K.L., and Roland, C.M. (1993) Chemical structure and intermolecular cooperativity: Dielectric relaxation results. Macromolecules 26, 6824-6830.

    Article  ADS  Google Scholar 

  45. Ngai, K.L., and Plazek, D.J. (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem. Technol. Rubber Review 68, 376-434.

    Google Scholar 

  46. Ngai, K.L., Plazek, D.J., and Rendell, R.W. (1997) Some examples of possible descriptions of dynamic properties of polymers by means of the coupling midel. Rheol. Acta 36, 307-319.

    Google Scholar 

  47. Ngai, K.L. (1996) A review of critical experimental facts in electrical relaxation and ionic diffusion in ionically conducting glasses and melts. J. Non-Cryst. Solids 203, 232-245.

    Article  ADS  Google Scholar 

  48. Ngai, K.L., Greaves, G.N., and Moynihan, C.T. (1998) Correlation between the activation energies for ionic conductivity for short and long time scales and the Kohlrausch stretching parameter E for ionically conducting solids and melts. Phys. Rev. Lett. 80, 1018-1021.

    Article  ADS  Google Scholar 

  49. Ngai, K.L. (2001) Coupling model explanation of salient dynamic properties of glass-forming substances. IEEE Trans. Dielectrics Electrical Insulation 8, 329-344.

    Article  Google Scholar 

  50. Ngai, K.L. (1979) Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter, 1. Comments Solid State Phys. 9, 127-140.

    Google Scholar 

  51. Schneider, U., Brand, R., Lunkenheimer, P., and Loidl, A. (2000) Excess wing in the dielectric loss of glass formers: A Johari-Goldstein E relaxation? Phys. Rev. Lett. 84, 5560-5563.

    Article  ADS  Google Scholar 

  52. Paluch, M., Roland, C.M., Pawlus, S., Zioáo, J., and Ngai, K.L. (2003) Does the Arrhenius temperature dependence of the Johari-Goldstein relaxation persist above T g ? Phys. Rev. Lett. 91, 115701, 1-4.

    Google Scholar 

  53. Prevosto, D., Capaccioli, S., Lucchesi, M., Rolla, P.A., and Ngai, K.L. (2004) Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. J. Chem. Phys. 120, 4808-4815.

    Article  ADS  Google Scholar 

  54. Capaccioli, S., and Ngai, K.L. (2005) Relation between the D-relaxation and Johari-Goldstein E-relaxation of a component in binary miscible mixtures of glass-formers. J. Phys. Chem. B 109, 9727-9735.

    Article  Google Scholar 

  55. Ngai, K.L., and Capaccioli, S. (2004) Changes of the primary and secondary relaxa-tion of sorbitol in mixtures with glycerol. J. Phys. Chem. B 108, 11118-11124.

    Article  Google Scholar 

  56. Psurek, T., Maslanka, S., Paluch, M., Nozaki, R., and Ngai, K.L. (2004) Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation, Phys. Rev. E 70, 011503, 1-6.

    Google Scholar 

  57. Ngai, K.L. (1999) Correlation between E-relaxation and ▵-relaxation in the family of poly(n-butyl methacrylate-stat-styrene) random copolymers. Macromolecules 32, 7140-7146.

    Article  ADS  Google Scholar 

  58. Beiner, M., and Ngai, K. L. (2005) Interrelation between primary and secondary relaxations in polymerizing systems based on epoxy resins. Macromolecules 38, 7033-7042.

    Article  ADS  Google Scholar 

  59. Capaccioli, S., Prevosto, D., Lucchesi, M., Rolla, P.A., Casalini, R., and Ngai, K.L. (2005) Identifying the genuine Johari-GoldsteinE-relaxation by cooling, compressing, and aging small molecular glass-formers. J. Non-Cryst. Solids 351, 2643-2651.

    Article  ADS  Google Scholar 

  60. Mai, C., Etienne, S., Perez, J., and Johari, G.P. (1985) Modulus and internal friction in phosphate-silicate bioactive glass. J. Non-Cryst. Solids 74, 119-127.

    Article  ADS  Google Scholar 

  61. Mai, C., Etienne, S., Perez, J., and Johari, G.P. (1985) Mechanical relaxation of CKN. Philos. Mag. B 50, 657-663.

    Google Scholar 

  62. Zetsche, A., and Fischer, E.W. (1994) Dielectric studies of the α-relation in miscible polymer blends and its relation to concentration flucutations. Acta Polym. 45, 168-175.

    Article  Google Scholar 

  63. Kamath, S., Colby, R.H., and Kumar, S.K. (2003) Dynamic heterogeneity in miscible polymer blends with stiffness disparity: Computer simulations using the bond fluctuation model. Macromolecules 36, 8567-8573.

    Article  ADS  Google Scholar 

  64. Lodge, T., and McLeish, T.C.B. (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33, 5278-5284.

    Article  ADS  Google Scholar 

  65. For a review of mixtures and polymer blends, see Ngai, K.L., and Roland, C.M. (2004) Models for the component dynamics in blends and mixures. Rubber Chem. Technol. 77, 579-590.

    Google Scholar 

  66. Alcoutlabi, M., and McKenna, G.B. (2005) Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461-R524.

    Article  ADS  Google Scholar 

  67. Yamamuro, O., Tsukushi, I., Lindqvist, A., Takahara, S., Ishikawa, M., and Matsuo, T. (1998) Calorimetric study of glassy and liquid toluene and ethylbenzene: Thermo-dynamic approach to spatial heterogeneity in glass-forming molecular liquids. J. Phys. Chem. B 102, 1605-1609.

    Article  Google Scholar 

  68. Johari, G.P. (2000) Contributions to the entropy of a glass and liquid and the dielectric relaxation time. J. Chem. Phys. 112, 7518-7523; Johari, G.P. (2000) A resolution for the enigma of a liquid’s configurational entropy-molecular kinetics relation. J. Chem. Phys. 112, 8958-8969.

    Google Scholar 

  69. Reinsberg, S.A., Heuer, A., Doliwa, B., Zimmermann, H., and Spiess, H.W. (2002) Comparative study of the NMR length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solids 307-310, 208.

    Article  ADS  Google Scholar 

  70. Ngai, K.L. (1999) A modification of the Adam-Gibbs model of glass transition for for consistency with experimental data. J. Chem. Phys. 103, 5895-5902.

    Google Scholar 

  71. Cohen, M.H., and Turnbull, D. (1959) Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164-1169; Turnbull, D., and Cohen, M.H. (1970) On the freevolume model of the liquid-glass transition. J. Chem. Phys. 52, 3038-3041.

    Google Scholar 

  72. Dlubek, G., Kilburn, D., and Alam, M.A. (2005) Temperature and pressure dependence of D-relaxation and free volume in poly(vinyl acetate). Macromol. Chem. Phys. 206, 818-826.

    Article  Google Scholar 

  73. Simha, R., and Somcynsky, T. (1969) On statitical thermodynamics of spherical and chain molecule fluids. Macromolecules 2, 342-350.

    Article  ADS  Google Scholar 

  74. Utracki, A. (1983) On free volume. Polym. Eng. Sci. 23, 446.

    Article  Google Scholar 

  75. Dlubek, G., Kilburn, D., and Alam, M.A. (2004) Comments to the paper “The need to reconsider tradional free volume theory for polymer electrolytes.” Electrochem. Acta 49, 5241-5247; Okamoto, K., Tanaka, K., Katsube, M., Kida, H., Sueoka, O., and Ito, Y. (1993) Polym. J. 25, 275; Tanaka, K., Kawai, T., Kida, H., Okamoto, K., and Ito, Y. (2000) Macromolecules 33, 5513; Bamford, D., Reiche, A., Dlubek, G., Alloin, F., Sanchez, J.-Y., and Alam, M.A. (2003) Ionic conductivity, glass transi-tion, and local free volume in poly(ethylene oxide) electrolytes: Single and mixed ion conductors. J. Chem. Phys. 118, 9420-9432.

    Google Scholar 

  76. Bartos, J., and Ngai, K.L. to be published.

    Google Scholar 

  77. The “self-concentration” factor for polymer blends can be easily incorporated into the CM without distracting from the main point, which is the necessity of treating the many-molecule dynamics in both neat glass-formers and their mixtures.

    Google Scholar 

  78. Capaccioli, S., Kessairi, K., Prevosto, D., Lucchesi, M., and Ngai, K.L., (2005) Genuine Johari-Goldstein E-relaxations in glass-forming binary mixtures. J. Non- Cryst. Solids. submitted.

    Google Scholar 

  79. Ngai, K.L. (1999) Removal of cooperativity in glass-forming materials to reveal the primitive ▵-relaxation of the coupling model. J. Phys.: Condens. Matter 11, A119-A130.

    Article  ADS  Google Scholar 

  80. Ngai, K.L. (2002) Mobility in thin polymer films ranging from local segmental motion, Rouse modes to whole chain motion: A coupling model consideration. Eur. Phys. J. E 8, 225-232.

    Article  Google Scholar 

  81. Ngai, K.L. (2005) Interpreting the dynamics of nano-confined glass-formers and thin polymer films: Importance of starting from a viable theory for the bulk. J. Polym. Sci. B: Polym. Phys. 55, 2980-2995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Ngai, K.L. (2007). All standard theories and models of glass transition appear to be inadequate: missing some essential physics. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_6

Download citation

Publish with us

Policies and ethics