Skip to main content

Theoretical and Experimental Models of Molecules Illustrated with Quantum-Chemical Calculations of Electronic Structure of H2CN2 Isomers

  • Conference paper
Models, Mysteries and Magic of Molecules

Abstract

To compare aspects of theoretical and experimental models of molecules, we employ the results of quantum-chemical calculations on diazomethane and six structural isomers with formula H2CN2; significant deficiencies of both models impede comparison between a calculated value of a property and a corresponding value deduced from experiment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Ogilvie, J. Mol. Struct. 3, 513–516 (1969).

    Article  CAS  Google Scholar 

  2. B. T. Hart, Aust. J. Chem. 26, 461–476, 477–488 (1973).

    Google Scholar 

  3. J. B. Moffat, J. Mol. Struct. 52, 275–280 (1979).

    Article  CAS  Google Scholar 

  4. C. Thomson and C. Glidewell, J. Comput. Chem. 4, 1–8 (1983).

    Article  CAS  Google Scholar 

  5. C. Guimon, S. Khayar, F. Gracian, M. Begtrup and G. Pfister-Guillozo, Chem. Phys. 138, 157–171 (1989).

    Article  CAS  Google Scholar 

  6. A. I. Boldyrev, P. von R. Schleyer, D. Higgins, C. Thomson and S. Kramarenko, J. Comput. Chem. 13, 1066–1078 (1992).

    Google Scholar 

  7. S. Kawauchi, A. Tachibana, M. Mori, Y. Shibusa and T. Yamabe, J. Mol. Struct. 310, 255–267 (1994).

    Article  Google Scholar 

  8. G. Maier, J. Eckwert, A. Bothur, H. P. Reisenauer and C. Schmidt, Liebigs Ann. Chem. 1041–1053 (1996).

    Google Scholar 

  9. D. Rinaldi, M. F. Ruiz-Lopez, M. T. C. Martins Costa and J. L. Rivail, Chem. Phys. Lett. 128, 177–181 (1986).

    Google Scholar 

  10. J. F. Ogilvie, J. Oddershede and S. P. A. Sauer, Adv. Chem. Phys. 111, 475–536 (2000).

    Google Scholar 

  11. Dalton, a computer program for molecular electronic structure, release 2.0 (2005); cf.http://www.kjemi.uio.no/software/dalton/dalton.html.

    Google Scholar 

  12. T. van Mourik and T. H. Dunning, Int. J. Quantum Chem. 76, 205 (2000) and references therein.

    Article  Google Scholar 

  13. J. Cioslowski, J. Amer. Chem. Soc. 111, 8333–8336 (1989).

    Article  CAS  Google Scholar 

  14. A. B. Pippard, Contemp. Phys. 29, 399–405 (1988).

    Article  Google Scholar 

  15. I. L. Thomas, Phys. Rev. 185, 90–94 (1969) and related papers.

    Article  CAS  Google Scholar 

  16. M. Cafiero and L. Adamowicz, Chem. Phys. Lett. 387, 136–141 (2004).

    Article  CAS  Google Scholar 

  17. B. T. Sutcliffe and R. G. Woolley, Chem. Phys. Lett. 408, 445–447 (2005).

    Article  CAS  Google Scholar 

  18. K. Sodeyama, K. Miyamoto and H. Nakai, Chem. Phys. Lett. 421, 72–76 (2006).

    Article  CAS  Google Scholar 

  19. R. G. Woolley, Adv. Phys. 25, 27–52 (1976).

    Article  CAS  Google Scholar 

  20. J. F. Ogilvie and J. Oddershede, Adv. Quantum Chem. 48, 253–318 (2005).

    Article  Google Scholar 

  21. M. Birk and M. Winnewisser, Chem. Phys. Lett. 123, 386–389 (1986).

    Article  CAS  Google Scholar 

  22. J. F. Ogilvie, Spectrochim Acta, 23A, 737–750 (1967).

    Google Scholar 

  23. M. Khlifi, P. Paillous, P. Bruston and F. Raulin, Icarus, 124, 318–328 (1996).

    Article  CAS  Google Scholar 

  24. M. Birk, M. Winnewisser and E. A. Cohen, J. Mol. Spectrosc. 136, 402–445 (1989).

    Article  CAS  Google Scholar 

  25. M. A. Vincent and C. E. Dykstra, J. Chem. Phys. 73, 3838–3842 (1980).

    Article  CAS  Google Scholar 

  26. D. J. D. Wilson, C. E. Mohn and T. Helgaker, J. Chem. Theory Comput. 1, 877–888 (2005).

    Article  CAS  Google Scholar 

  27. A. P. Cox and J. Sheridan, Nature, 181, 1000–1001 (1958).

    Article  CAS  Google Scholar 

  28. E. Schafer and M. Winnewisser, J. Mol. Spectrosc. 97, 154–164 (1983).

    Article  Google Scholar 

  29. C. B. Moore and G. C. Pimentel, J. Chem. Phys. 40, 329–341, 342–356 (1964).

    Article  CAS  Google Scholar 

  30. J. Vogt, M. Winnewisser, K. Yamada and G. Winnewisser, Chem Phys 83, 309–318 (1984) and references therein.

    Article  CAS  Google Scholar 

  31. L. Nemes, J. Vogt and M. Winnewisser, J. Mol. Struct. 218, 219–224 (1990).

    Article  CAS  Google Scholar 

  32. E. Schafer, M. Winnewisser and J. J. Christiansen, Chem. Phys. Lett. 81, 380–386 (1981).

    Article  Google Scholar 

  33. R. D. Brown, P. D. Godfrey and B. Kleibomer, J. Mol. Spectrosc. 114, 257–273 (1985).

    Article  CAS  Google Scholar 

  34. R. D. Brown, P. D. Godfrey, M. Headgordon, K. H. Weidemann and B. Kleibomer, J. Mol. Spectrosc. 130, 213–220 (1988).

    Article  CAS  Google Scholar 

  35. M. Winnewisser and J. Reinstaedtler, J. Mol. Spectrosc. 120, 28–48 (1986).

    Article  CAS  Google Scholar 

  36. S. T. King and J. H. Strope, J. Chem. Phys. 54, 1289–1295 (1971).

    Article  CAS  Google Scholar 

  37. N. Goldberg, A. Fiedler and H. Schwarz, Helv. Chim. Acta, 77, 2354–2362 (1994).

    Article  CAS  Google Scholar 

  38. L. Pierce and V. Dobyns, J. Amer. Chem. Soc. 84, 2651–2652 (1962).

    Article  CAS  Google Scholar 

  39. M. Bogey, M. Winnewisser and J. J. Christiansen, Can. J. Phys. 62, 1198–1216 (1984).

    Google Scholar 

  40. B. P. Winnewisser, A. Gambi and M. Winnewisser, J. Mol. Struct. 320, 107–123 (1994) and references therein.

    Article  CAS  Google Scholar 

  41. W. H. E. Schwarz, Angew. Chem. Int. Ed. 45, 1508–1517 (2006).

    Article  CAS  Google Scholar 

  42. J. F. Ogilvie, J. Chem. Ed. 67, 280–289 (1990) and references therein.

    Article  CAS  Google Scholar 

  43. H. Primas, Chemistry, Quantum Mechanics and Reductionism, second edition, Berlin, Germany: Springer-Verlag (1983) and references therein.

    Google Scholar 

  44. P. A. M. Dirac, Nature, 203, 115–116 (1964).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Ogilvie, J., Wang, F. (2008). Theoretical and Experimental Models of Molecules Illustrated with Quantum-Chemical Calculations of Electronic Structure of H2CN2 Isomers. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_16

Download citation

Publish with us

Policies and ethics