Skip to main content

Seaweeds on the Abrasion Platforms of the Intertidal Zone of Eastern Mediterranean Shores

  • Chapter
Algae and Cyanobacteria in Extreme Environments

Over millions of years of evolution, marine macroalgae (commonly referred to as seaweeds) have remained within a narrow and restricted niche, compared to the extensive area covered by oceans and seas. This narrow fringe is the intertidal zone, in which seaweeds are intermittently exposed to harsh conditions such as high irradiance, desiccation and high temperatures. What were the adaptive strategies and physiological needs of these plants to thrive and complete their life cycles over millions of years in these harsh environments? Seaweed’s first records date at least 300 million years, and within this period of time they went through several episodes of environmental change. Today, marine macroalgae comprise about 20,000 species of which a large number can be found within the intertidal zone. During evolution macroalgae diverged into three major categories or divisions: green (Chlorophyta), brown (Phaeophyta) and red (Rhodophyta) seaweeds. The present Mediterranean flora has a history of about five million years. After the isolation of the Mediterranean from the Atlantic, biota surviving the late cooling Miocene re-colonized the vacant basin and established the early Pliocene biota. Then, the Mediterranean Sea lost its coral reefs and its tropical character in general (Luning, 1990). The dramatic climate changes (glacial periods), which took place in this area in the Pleistocene, may have allowed a number of cold-temperate species to invade the area and to form disjunctive populations in cooler parts of the Mediterranean after the glaciations (Hoek and Breeman, 1990). Empty niche space and the climate changes in the late Pliocene and the Pleistocene may have promoted speciation and origin of endemic species. Today, the Mediterranean coasts are inhabited by a rich seaweed flora, including endemic, tropical, warm and cold-temperate species (Orfanidis, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson, L., Ryberg, H. and Beer, S. (1995). Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ. 18: 439-445.

    Article  CAS  Google Scholar 

  • Barak, H., Shefer, E. and Cohen, Y. (2005). Environmental Quality of Israel’s Mediterranean Coastal Waters in 2004. Annual Report of the National Marine Environmental Monitoring Program. IOLR Report H34/2005a.

    Google Scholar 

  • Beer, S. and Eshel, A. (1983a). Photosynthesis ofUlva sp. I. Effects of desiccation when exposed to air. J. Exp. Mar. Biol. Ecol. 70: 91-97.

    Article  Google Scholar 

  • Beer, S. and Eshel, A. (1983b). Photosynthesis ofUlva sp. II. Utilization of CO2 and HCO3− when submerged. J. Exp. Mar. Biol. Ecol. 70: 99-106.

    Article  CAS  Google Scholar 

  • Conway, T. J. and Tans, P. P. (1996). Atmospheric carbon dioxide mixing ratios from the NOAA cli-mate monitoring and diagnostics laboratory cooperative flask sampling network, 1967-1993. National Oceanic and Atmospheric Administration, Boulder, Colorado NDP-005, ORNL/ CDIAC-73.

    Google Scholar 

  • Crutzen, P. J. (1992). Ultraviolet on the increase. Nature 356: 104-105.

    Article  Google Scholar 

  • Drechsler, Z., Sharkia, R., Cabantchik, Z. I. and Beer, S. (1994). The relationship of arginine groups to photosynthetic HCO3− uptake in Ulva sp. mediated by a putative anion exchanger. Planta 194: 250-255.

    Article  CAS  Google Scholar 

  • Einav, R. (1998). Two observations of seaweeds from the Israeli coast: Boodleopsis pusilla and Caulerpa prolifera (Forsskal) Lamouroux (Chlorophyta, Caulerpales). Isr. J. Plant Sci. 46: 81-82.

    Google Scholar 

  • Einav, R. (2004). Seaweeds of eastern Mediterranean coast. Bar-Ilan Academic press. Ramat Gan. (in Hebrew, accepted by Koeltz scientific books to be published in English).

    Google Scholar 

  • Einav, R. and Beer, S. (1993). Photosynthesis in air and in water of Acanthophora nayadiformis grow-ing within a narrow zone of the intertidal. Mar. Biol. 117: 33-138.

    Article  Google Scholar 

  • Einav, R., Beer, S. and Breckle, S. (1995). Ecophysiological adaptation strategies of some intertidal marine macroalgae of the Israeli Mediterranean coast. Mar. Ecol. 125: 219-228.

    Article  Google Scholar 

  • Einav, R., Sharon, Y. and Zahavi, A. (1996). The relationship between wave energy and botanical population (macroalgae and terrestrials plants) on the Pigeon Island, The Mediterranean Sea, Israel. Proceedings of the 6th International Conference of the Israeli Society for Ecology and Environmental Quality Sciences. Jerusalem, Israel, VIB: 532-537. ISEEQS, Jerusalem, Israel.

    Google Scholar 

  • Franklin L. and Forster R. M. (1997). The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207-232.

    Google Scholar 

  • Friedlander, M., Krom, M. D. and Ben Amotz, A. (1991). The effect of light and ammonium on growth, epiphytes and chemical constituents of Gracilaria conferta in outdoor cultures. Bot. Mar. 34: 161-166.

    Article  CAS  Google Scholar 

  • Goldsmith, V. and Golik, A. (1978). The Israeli wave climate and longshore sediment transport model. Israel. Oceanog. Lim. Res., Rep. 78/1, 56p.

    Google Scholar 

  • Goldsmith, V. and Sofer, S. (1983). Wave climatology of the southwestern Mediterranean: an inte-grated approach. Isr. J. Earth Sci. 32: 1-51.

    Google Scholar 

  • Gomez, I. and Figueroa, F. L. (1998). Effects of solar UV stress on chlorophyll fluorescence kinetics of intertidal macroalgae from southern Spain: a case study in Gelidium species. J. Appl. Phycol. 9: 1-10.

    Google Scholar 

  • Gröniger, A., Hallier, C. and Häder, D. P. (1999). Influence of UV radiation and visible light on Porphyra umbilicalis: photoinhibition and MAA concentration. J. Appl. Phycol. 11: 437-445.

    Article  Google Scholar 

  • Hoek, C. van den and Breeman, A. M. (1990). Seaweed biogeography of the North Atlantic: where are we now? In: D. J. Garbary and G. R. South, (eds.) Evolutionary biogeography of marine algae in the North Atlantic. NATO ASI Ser G22. Springer-Verlag. Berlin. pp. 55-87.

    Google Scholar 

  • Israel, A. and Friedlander, M. (1998). Inorganic carbon utilization and growth abilities in the marine macroalga Gelidiopsis sp. Isr. J. Plant Sci. 46: 117-124.

    CAS  Google Scholar 

  • Israel, A. and Hophy, M. (2002). Growth, photosynthetic properties, and Rubisco activities of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biol. 8: 831-840.

    Article  Google Scholar 

  • Israel, A., Martinez-Goss, M. and Friedlander, M. (1999a). Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor culture. J. Appl. Phycol. 11: 543-549.

    Article  Google Scholar 

  • Israel, A., Katz, S., Dubinsky, Z., Merrill, J. E. and Friedlander, M. (1999b). Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J. Appl. Phycol. 11: 447-453.

    Article  Google Scholar 

  • Jerlov, N. G. (1950). Ultra-violet radiation in the sea. Nature 166: 111-112.

    Article  CAS  PubMed  Google Scholar 

  • Kress, N. and Herut, B. (1998). Hypernutrificationin the oligotrophic eastern Mediterranean. A study in Haifa Bay, Israel. Estuar. Coast. Shelf Sci. 46: 645-656.

    Article  CAS  Google Scholar 

  • Larkum, A. W. D. and Wood, W. F. (1993). The effect of UVB radiation on photosynthesis and res-piration of phytoplankton, benthic macroalgae and seagrasses. Photosyn. Res. 36: 17-23.

    Article  CAS  Google Scholar 

  • Lipkin, Y., Beer, S. and Eshel, A. (1993). The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot. Mar. 36: 517-523.

    Article  Google Scholar 

  • Lobban, C. S. and Harrison, P. J. (1994). Seaweed ecology and physiology. Cambridge University press. pp. 220-240.

    Google Scholar 

  • Lundberg, B. (1989). Food habits of Siganus rivulatus, a Lessepsian migrant, as adapted to algal resources at the coast of Israel. In: E. Spanier, Y. Steinberger and M. Luria, (eds.) Environmental Quality and Ecosystem Stability. ISEEQS Pub., Jerusalem: 5b: 113-124.

    Google Scholar 

  • Luning, K. (1990). Seaweeds. Their environment, biogeography and ecophysiology. John Wiley & Sons, NY. pp. 527.

    Google Scholar 

  • Orfanidis, S. (1992). Light requirements for growth of six shade-acclimated Mediterranean macroal-gae. Mar. Biol. 112: 511-515.

    Article  Google Scholar 

  • Palenik, B., Price, N. M. and Morel, F. M. M. (1991). Potential effects of UV-B on the chemical envi-ronment of marine organisms: a review. Environ. Poll. 70: 117-130.

    Article  CAS  Google Scholar 

  • Russell, G. (1987). Salinity and seaweed vegetation. In, R. M. Crawford (ed.). The physiological vege-tation of amphibious and intertidal plants. Blackwell, Oxford, pp. 32-35.

    Google Scholar 

  • Sinha R. P., Klisch M., Gröniger A. and Häder D. P. 2000. Mycosporine-like amino acids in the marine red alga Gracilaria cornea - effects of UV and heat. Environ. Exp. Bot. 43: 33-43.

    Article  CAS  Google Scholar 

  • Smith, R. C. and Baker, K. S. (1979). Penetration of UV-B and biologically effective dose-rates in nat-ural waters. Photochem. Photobiol. 29: 311-323.

    Article  CAS  Google Scholar 

  • Smith, R. C. and Baker, K. S. (1989). Stratospheric ozone, middle ultraviolet radiation and phyto-plankton productivity. Oceanogr. Mag. 2: 4-10.

    Google Scholar 

  • Sonin, O., Spanier E. and Pisanty, S. (1996). Undersize fishes in the catch of the Israeli Mediterranean fisheries - are there differences between shallow and deeper water? Proceedings of the 6th International Conference of the Israeli Society for Ecology and Environmental Quality Sciences. Jerusalem, Israel, VIB: 449-454. ISEEQS, Jerusalem, Israel.

    Google Scholar 

  • Wood, W. F. (1987). Effect of solar ultra-violet radiation on the kelp Eklonia radiata. Mar. Biol. 96: 143-150.

    Article  Google Scholar 

  • Zahavi, A. (2006). The processes and rate of rocky coast landscape development. Proceeding of the Annual Symposium of the Israeli Geographical Society. Hebrew University, Jerusalem. pp. 42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Einav, R., Israel, A. (2007). Seaweeds on the Abrasion Platforms of the Intertidal Zone of Eastern Mediterranean Shores. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_10

Download citation

Publish with us

Policies and ethics