Skip to main content

The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia)

  • Conference paper
Shallow Lakes in a Changing World

Part of the book series: Developments in Hydrobiology ((DIHY,volume 196))

Abstract

The shallow Lake Vrana was studied over a 1-year period, special attention being paid to the phytoplankton. Phytoplankton was investigated monthly with respect to temporal variability of selected environmental factors. The regular annual development observed was in species contribution to total biomass rather than in seasonal changes in species composition. The assemblage was dominated by Cosmarium tenue Arch. and Synedra sp. In winter and in spring the phytoplankton assemblage was dominated by Cosmarium tenue and high contribution of Synedra sp. was observed during the summer and autumn. Results suggest that concentrations of inorganic nitrogen and phosphorus were critical in regulating phytoplankton biomass and species dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Waster Water, 19th edn. APHA, Washington.

    Google Scholar 

  • Arar, E. J. & G. B. Collins, 1997. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence. National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio.

    Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 637–709.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth.

    Google Scholar 

  • Coesel, P. F. M., 1994. On the ecological significance of a cellular mucilaginous envelope in planktic desmids. Algological Studies 73: 65–74.

    Google Scholar 

  • Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography and Marine Biology-An Annual Review 28:73–153.

    Google Scholar 

  • Fernández-Aláez, M., C. Fernández-Aláez, E. Bécares, M. Valentin, J. Goma & P. Castrill, 2004. A 2-year experimental study on nutrient and predator influences on food web constituents in a shallow lake of north-west Spain. Freshwater Biology 49: 1574–1592.

    Article  CAS  Google Scholar 

  • Gliwicz, Z. M., 2002. On the different nature of top-down and bottom-up effects in pelagic food webs. Freshwater Biology 47: 2296–2312.

    Article  Google Scholar 

  • Grover, J. P., 1989. Influence of cell shape and size on algal competitive ability. Journal of Phycology 25: 402–405.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of associations, and ordination methods. Hydrobiologia 268: 9–26.

    Google Scholar 

  • Jensen, J. P., P. Kristensen & E. Jeppensen, 1991. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 24: 201–204.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Laurisden, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lake: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151–164.

    Article  Google Scholar 

  • Kilham, P. & D. Tilman, 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergebnisse der Limnologie 13: 110–111.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimations by counting. Hydrobiologia 11: 6–21.

    Article  Google Scholar 

  • Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.

    Article  Google Scholar 

  • Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1–11.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.

    Article  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf. Ecology Institute.

    Google Scholar 

  • Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity a synthesis. Hydrobiologia 249: 183–188.

    Article  Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 2003. Are there steady state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibration. Schweizerische Zeitschrift für Hydrologie 43: 35–62.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18: 275–284.

    Article  CAS  Google Scholar 

  • Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient rich lake (Lake Constance). Progress in Phycological Research 5: 122–178.

    Google Scholar 

  • Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, New York: 57–107.

    Google Scholar 

  • Sommer U., A. Gaedeke & A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance. II: the response of phytoplankton taxonomic composition. Oecologia 93: 276–284.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506-509: 135–145.

    Article  Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996a. Competition for phosphorus among planktonic desmid species in continuous flow culture. Journal of Phycology 32: 939–948.

    Article  Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1996b. Phosphorus uptake and growth kinetics of two planktonic desmid species. European Journal of Phycology 31: 53–60.

    Article  Google Scholar 

  • Spijkerman, E. & P. F. M. Coesel, 1998. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope. Freshwater Biology 39: 503–513.

    Article  CAS  Google Scholar 

  • Stephen, D., D. M. Balayla, S. E. Collings & B. Moss, 2004. Two mesocosm experiments investigating the control of summer phytoplankton growth in a small shallow lake. Freshwater Biology 49: 1551–1564.

    Article  CAS  Google Scholar 

  • Stephen, D., B. Moss & G. Phillips, 1998. The relative importance of top-down and bottom-up control of phytoplankton in a shallow macrophyte-dominated lake. Freshwater Biology 39: 699–713.

    Article  Google Scholar 

  • Suttle, C. A., J. G. Stockner & P. J. Harrison, 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Canadian Journal of Fisheries and Aquatic Sciences 44: 1768–1774.

    Article  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13:349–372.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Article  Google Scholar 

  • Whitton, B. A., 1967. Phosphate accumulation by colonies of Nostoc. Plant and Cell Physiology 8: 293–296.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gligora, M., PlenkovićMoraj, A., Kialj, K., Grigorszky, I., Peroš-Pucar, D. (2007). The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). In: Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E. (eds) Shallow Lakes in a Changing World. Developments in Hydrobiology, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6399-2_30

Download citation

Publish with us

Policies and ethics