Skip to main content

Experimental Methods of Studying Mechanosensitive Channels and Possible Errors in Data Interpretation

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

abstract

In this review we discuss most widely used experimental methods of the membrane stretch which are used for investigation of mechanosensitive channels (MSCs) by patch-clamp. We have tried to discuss possible mistakes in interpreting the data received by various methods of MSCs investigation. In the conditions of single channel recording we briefly analyse positive and negative pressure as mechanical stimulation and demonstrate that MSC respond only to membrane tension. After gigaseal forming suction there appears resting patch for the reason of the patch adhesion to the glass and this creates a resting tension. It is shown that some channels can be active at zero pressure because the seal adhesion energy produces tension. Such a situation can be considered as pre-stretch. Related to this we discuss research showing that stretch-inactivated channels (SICs) do not imply the existence of a new type of channel, but inactivation of channel activity in response to suction can be explained by the activity of pre-stressing of stretch-activated channels (SACs). We also criticize the presence of pressure activated channels (PACs). According to the Laplace’s equation, positive or negative pressures should make equal contributions to the stress. In the conditions of whole cell recording we discuss the known methods of a cell direct mechanical stretching. That is homogeneous stretching of single cells with the use of two patch pipettes, three types of axial stretch - by two glass capillaries, by glass stylus and by two thin carbon fibres. We briefly discuss the merits and imperfections of cell swelling. We analyse the possibilities of paramagnetic microbead method that allows the application of controlled forces to the membrane at which those mechanical forces are transmitted by integrins. We discuss the possibilities of cell compression. Obviously the stresses are very complicated in compression and no one knows how to analyze the data in a mechanistic manner. We discuss the study of bacterial mechanosensitive channels. We discuss the limitation of the research using protein purification and functional reconstitution in planar lipid bilayers or in vesicles. Also, rarely used methods are presented. In this review we discuss most widely used experimental methods of the membrane stretch, which are used for investigation of mechanosensitive channels (MSCs) by means of patch-clamp method. We address possible mistakes in interpreting the data, obtained by means of various methods of MSCs investigation. Under conditions of single channel recording we briefly analyse positive and negative pressure in terms of mechanical stimulation and demonstrate that MSC respond only to membrane tension. Resting tension of the membrane is created after suction, which is applied for the purpose of gigaseal formation. It is shown that some channels can be active at zero pressure because the seal adhesion energy produces tension. Such situation can be considered as pre-stretch. In this respect we discuss reports, showing that stretch-inactivated channels (SICs) do not imply the existence of a new type of channels, when inactivation of channel activity in response to suction can be explained by the activity of pre-stressing of stretch-activated channels (SACs). We discuss the controversy about the presence of pressure activated channels (PACs). According to the Laplace’s equation, positive or negative pressures should make equal contributions to the stress. We also discuss reported methods of direct mechanical stretching of cells during whole cell recording. Discussion covers method of homogeneous stretching of a single cell by means of two patch pipettes and three types of axial stretch - by two glass capillaries, by glass stylus and by two thin carbon fibres. We briefly discuss the merits and imperfections of cell swelling. We analyse the possibilities of paramagnetic microbead method that allows the application of controlled forces to the membrane, at the level of which those mechanical forces are transmitted by integrins. We discuss possible methods of cell compression. Obviously distribution of forces is very complicated during compression and no one knows how to analyze the data in a mechanistic manner. We discuss the study of bacterial mechanosensitive channels. We discuss the limitation of the research using protein purification and functional reconstitution in planar lipid bilayers and in vesicles. Also, rarely used methods are presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akinlaja J and Sachs F (1998) The breakdown of cell membranes by electrical and mechanical stress Biophys J 75: 247–254.

    PubMed  CAS  Google Scholar 

  • Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol (Lond) 327:79–94.

    CAS  Google Scholar 

  • Andersen OS, Nielsen C, Maer AM, Lundbaek JA, Goulian M, Koeppe RE 2nd. (1999) Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol 294:208–224.

    PubMed  CAS  Google Scholar 

  • Awayda MS, Ismailov II, Berdiev BK, Benos DJ (1995) A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physiol 268(6 Pt 1): C1450–C1459.

    PubMed  CAS  Google Scholar 

  • Baumgarten CM (2005) Cell volume-sensitive ion channels and transporters in cardiac myocytes. In Cardiac Mechano-Electrical Feedback and Arrhythmias: From Pipette to Patient, eds. Kohl P, Franz MR, Sachs F, Saunders, Philadelphia, pp. 21–32.

    Google Scholar 

  • Baumgarten CM, Browe DM, Ren Z (2005) Swelling- and Stretch-Activated Chloride Channels in the Heart: Regulation and Function. In: Kamkin A and Kiseleva I (ed) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd, Moscow, 2005: pp. 79–102.

    Google Scholar 

  • Baumgarten CM, Clemo HF (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 82:25–42

    PubMed  CAS  Google Scholar 

  • Baumgarten CM, Feher JJ (2001) Osmosis and the regulation of cell volume. In Cell Physiology Source Book: A Molecular Approach, ed. Sperelakis N, Academic Press, New York, 319–355.

    Google Scholar 

  • Belus A, White E (2003) Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. J Physiol (Lond) 546:501–509.

    CAS  Google Scholar 

  • Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from E. coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187.

    PubMed  CAS  Google Scholar 

  • Berrier C, Coulombe A, Houssin C, Ghazi A (1989) A patch-clamp study of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure activated channels are localized in the inner membrane. FEBS Letters 259:27–32.

    PubMed  CAS  Google Scholar 

  • Besch SR, Suchyna T, Sachs F (2002) High-speed pressure clamp. Pflügers Arch - Eur J Physiol 445(1):161–166.

    CAS  Google Scholar 

  • Bett GCL and Sachs F (2000) Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membrane Biol 173: 255–263.

    CAS  Google Scholar 

  • Biggin PC and Sansom MSP (2001) Channel gating, Twist to open. Curr.Biol 11: R364–R366.

    PubMed  CAS  Google Scholar 

  • Betanzos M, Chiang C-S, Guy HR, Sukharev S (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol 9: 704–710.

    PubMed  CAS  Google Scholar 

  • Blinks JR (1990) Use of photoproteins as intracellular calcium indicators. Environ Health Perspect 84:75–81.

    PubMed  CAS  Google Scholar 

  • Boitano S, Sanderson MJ, Dirksen ER (1994) A role for Ca2+-conducting ion channels in mechanically induced signal transduction of airway epithelial cells. J Cell Sci 107: 3037–3044.

    PubMed  CAS  Google Scholar 

  • Bowman CL and Lohr JW (1996) Mechanotransducing ion channels in C6 glioma cells. Glia 18(3):161–176.

    PubMed  CAS  Google Scholar 

  • Bowman CL, Ding JP, Sachs F, Sokabe M. (1992) Mechanotransducing ion channels in astrocytes. Brain Res 584(1–2):272–286.

    PubMed  CAS  Google Scholar 

  • Browe DM and Baumgarten CM (2003) Stretch of UPbeta1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol 122: 689–702.

    PubMed  CAS  Google Scholar 

  • Calaghan SC, White E (1999) The role of calcium in the response of cardiac muscle to stretch. Prog Biophys Mol Biol 71:59–90.

    PubMed  CAS  Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6):983–992.

    PubMed  CAS  Google Scholar 

  • Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445(7125):295–298.

    PubMed  CAS  Google Scholar 

  • Colombo G, Marrink SJ, Mark AE (2003) Simulation of MscL gating in a bilayer under stress. Biophys J 84: 2331–2337.

    PubMed  CAS  Google Scholar 

  • Cui C, Smith DO, Adler J (1995) Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by wholecell patch-clamp recording. J Membr Biol 144: 31–42.

    PubMed  CAS  Google Scholar 

  • Dai J and Sheetz MP (1995) Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harbor Symp Quant Biol 60: 567–571.

    PubMed  CAS  Google Scholar 

  • Dai J and Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77: 3363–3370

    PubMed  CAS  Google Scholar 

  • Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262:C1083–C1088.

    PubMed  CAS  Google Scholar 

  • Delcour, A.H., Martinac, B., Adler, J. and Kung, C. (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56: 631–635.

    PubMed  CAS  Google Scholar 

  • Diamond SL, Sachs F, Sigurdson WJ (1994) The mechanically induced calcium mobilization in cultured endothelial cells is dependent on actin and phopholipase. Arterioscler Thromb 14:2000–2009.

    PubMed  CAS  Google Scholar 

  • Discher DE and Mohandas N (1996) Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J 71:1680–1694.

    PubMed  CAS  Google Scholar 

  • Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and “it situ” connectivity. Science 266:1032–1035.

    PubMed  CAS  Google Scholar 

  • Elliott JR, Needham D, Dilger JP, Haydon DA (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim Biophys Acta 735:95–103.

    PubMed  CAS  Google Scholar 

  • Fabiato A (1981) Myoplasmic free calcium concentration reached during the twich of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol 78: 457–497.

    PubMed  CAS  Google Scholar 

  • Franco-Obregón A and Lansman JB (1994). Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol (Lond) 481, 299–309.

    Google Scholar 

  • Franco-Obregón A and Lansman JB (2002) Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol (Lond) 539.2, 391–407.

    Google Scholar 

  • Gannier F, White E, Garnier D, Le Guennec JY (1996) A possible mechanism for large stretch-induced increase in [Ca2+]_i in isolated guinea-pig ventricular myocytes. Cardiovasc Res 32:158–167.

    PubMed  CAS  Google Scholar 

  • Glogauer G and Ferrier J (1998) A new method for application of force to cells via ferric oxide beads. Pflügers Arch - Eur J Physiol 435: 320–327.

    CAS  Google Scholar 

  • Glogauer M, Ferrier J, McCulloch CAG (1995) Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol 269: C1093–C1104.

    PubMed  CAS  Google Scholar 

  • Goulian M, Mesquita ON, Fygenson DK, Nielsen C, Andersen OS, Libchaber A (1998) Gramicidin channel kinetics under tension. Biophys J 74(1):328–37.

    PubMed  CAS  Google Scholar 

  • Gruen DW and Wolfe J (1982) Lateral tensions and pressures in membranes and lipid monolayers. Biochim Biophys Acta 688: 572–580.

    PubMed  CAS  Google Scholar 

  • Guharay F and Sachs F (1984) Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J Physiol (Lond) 352:685–701.

    CAS  Google Scholar 

  • Guharay F and Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH. J Physiol (Lond) 363: 119–134.

    CAS  Google Scholar 

  • Gullingsrud J and Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys. J. 85, 2087–2099.

    PubMed  CAS  Google Scholar 

  • Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80: 2074–2081.

    PubMed  CAS  Google Scholar 

  • Gustin MC, Sachs F, Sigurdson W, Ruknudin A, Bowman C, Morris CE, Horn R (1991) Single-channel mechanosensitive currents. Science 253: 800.

    PubMed  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242: 762–765.

    PubMed  CAS  Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels Pflügers Arch - Eur J Physiol 453: 333–351.

    CAS  Google Scholar 

  • Hamill OP and Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Revs 81:685–740.

    CAS  Google Scholar 

  • Hamill OP and McBride DW Jr (1997) Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol 59: 621–631.

    PubMed  CAS  Google Scholar 

  • Hart FX (2006) Integrins may serve as mechanical transducers for low-frequency electric fields. Bioelectromagnetics 27(6):505–508.

    PubMed  Google Scholar 

  • Häse CC, Le Dain AC and Martinac B (1995). Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270: 18329–18334.

    PubMed  Google Scholar 

  • Hongo K, White E, Le Guennec JY, Orchard CH (1996) Changes in [Ca2+]_i, [Na+]_i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol (Lond) 491:609–619.

    CAS  Google Scholar 

  • Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci USA 103(18):6859–6864.

    PubMed  Google Scholar 

  • Hörber JKH, Mosbacher J, Häbele W, Ruppersberg JP, Sakmann B (1995) A look at membrane patches with scanning force microscope. Biophys J 68:1687–1693.

    PubMed  Google Scholar 

  • Hoyer J, Distler A, Haase W, Gogelein H (1994) Ca2+ influx through stretch-activated cation channel activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci USA 91:2367–2371.

    PubMed  CAS  Google Scholar 

  • Hoyer J, Köhler R, Distler A (1997) Mechanosensitive cation channels in aortic endothelium of normotensive and hypertensive rats. Hypertension 30:112–119.

    PubMed  CAS  Google Scholar 

  • Hu H and Sachs F (1994) Effects of mechanical stimulation on embryonic chick heart cells. Biophys J 66:A170.

    Google Scholar 

  • Hu H and Sachs F (1995) Whole cell mechanosensitive currents in acutely isolated chick heart cells: correlation with mechanosensitive channels. Biophys J 68: A393.

    Google Scholar 

  • Hu H and Sachs F (1996) Mechanically activated currents in chick heart cells. J Membr Biol 154: 205–216.

    PubMed  CAS  Google Scholar 

  • Husse B, Sopart A, Isenberg G (2003) Cyclical mechanical stretch induced apoptosis in myocytes from young rats but necrosis in myocytes form old rats. Am J Physiol Heart Circ Physiol 285:H1521–H1527.

    PubMed  CAS  Google Scholar 

  • Hwang TC, Koeppe RE 2nd, Andersen OS (2003) Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42(46):13646–13658.

    PubMed  CAS  Google Scholar 

  • Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]_C in ventricular myocytes. Progr Biophys Mol Biol 82:43–56

    CAS  Google Scholar 

  • Isenberg G, Kondratev D, Dyachenko V, Kazanski V, Gallitelli MF (2005) Isolated cardiomyocytes: Mechanosensitivity of action potential, membrane current and ion concentration. In: Kamkin A and Kiseleva I (ed) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd, Moscow, 2005: pp. 126–164.

    Google Scholar 

  • Ismailov II, Awayda MS, Berdiev BK, Bubien JK, Lucas JE, Fuller CM, Benos DJ (1996a) Triple-barrel organization of ENaC, a cloned epithelial Na+ channel. J Biol Chem 271(2): 807–816.

    CAS  Google Scholar 

  • Ismailov II, Awayda MS, Jovov B, Berdiev BK, Fuller CM, Dedman JR, Kaetzel M, Benos DJ (1996b) Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271(9):4725–32.

    CAS  Google Scholar 

  • Ismailov II, Berdiev BK, Bradford AL, Awayda MS, Fuller CM, Benos DJ (1996c) Associated proteins and renal epithelial Na+ channel function. J Membr Biol 149(2):123–132.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2000) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy . Cardiovasc Res 48: 409–420.

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Yarigin V (2003) Mechanoelectrical feedback in the heart. Monograph. Naturmort Publishing House. Moscow. 352 pp. (Russian).

    Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2003a) Activation and inactivation of a non-selective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovasc Res 57: 793–803.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G, Wagner KD, Günther J, Theres H, Scholz H (2003b) Cardiac fbroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol 82: 111–120.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2003c) Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflügers Arch - Europ J Physiol 446(2): 220–231.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I, Wagner KD, Isenberg G, Scholz H (2005a) The role of mechanosensitive fibroblasts in the heart. In: Kamkin A and Kiseleva I (ed) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd, Moscow, 2005: pp. 203–229.

    Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Scholz H (2005b) Mechano-electric feedback in the heart: Evidence from intracellular microelectrode recordings on multicellular preparations and single cells from healthy and diseased tissue. In: Kamkin A and Kiseleva I (ed) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd, Moscow, 2005: pp. 165–202.

    Google Scholar 

  • Kawahara K (1993) Stretch-activated channels in renal tubule. Nippon Rinsho 51: 2201–2208.

    PubMed  CAS  Google Scholar 

  • Marchenko SM and Sage SO (1996) Mechanosensitive ion channels from endothelium of excised rat aorta. Biophys J 70: A365.

    Google Scholar 

  • Kloda A and Martinac B (2001a) Molecular Identification of a Mechanosensitive Channel in Archaea. Biophys J 80:229–240.

    CAS  Google Scholar 

  • Kloda A and Martinac B (2001b). Structural and functional similarities and differences between MscMJLR and MscMJ, two homologous MS channels of M. jannashii. EMBO J 20: 1888–1896.

    CAS  Google Scholar 

  • Kloda A and Martinac B (2001c) Mechanosensitive channel in Thermoplasma a cell wall-less Archaea: cloning and molecular characterization. Cell Biochem. Biophys. 34: 321–347.

    CAS  Google Scholar 

  • Köhler R, Distler A, Hoyer J (1998) Pressure-activated cation channel in intact rat endocardial endothelium. Cardiovasc Res 38: 433–440

    PubMed  Google Scholar 

  • Köhler R, Grundig A, Brakemeier S, Rothermund L, Distler A, Kreutz R, Hoyer J (2001a) Regulation of pressure-activated channel in intact vascular endothelium of stroke-prone spontaneously hypertensive rats. Am J Hypertension 14:716–721.

    Google Scholar 

  • Köhler R, Kreutz R, Grundig A, Rothermund L, Yagli C, Yagli Y, Pries AR, Hoyer J (2001b) Impaired function of endothelial pressure-activated cation channel in salt-sensitive genetic hypertension. J Am Soc Nephrol 12: 1624–1629.

    Google Scholar 

  • Komuro I, Kaida T, Shibazaki Y etal. (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265, No.7: 3595–3598.

    PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654.

    PubMed  CAS  Google Scholar 

  • Laitko U and Morris CE (2004) Membrane tension accelerates rate-limiting voltage-dependent ativation and slow inactivation steps in a Shaker channel. J Gen Physiol 123: 135–154.

    PubMed  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers. Nature 325:811–813

    PubMed  CAS  Google Scholar 

  • Le Guennec J-Y, White E, Gannier F, Argibay JA, Garnier D (1991) Stretch-induced increase of resting intracellular calcium concentration in single guinea-pig ventricular myocytes. Exp Physiol 76:975–978.

    PubMed  CAS  Google Scholar 

  • Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997.

    PubMed  CAS  Google Scholar 

  • Lundbaek JA and Andersen OS (1999) Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys J 76(2):889–895.

    PubMed  CAS  Google Scholar 

  • Markin VS and Sachs F (2004a) Thermodynamics of mechanosensitivity: lipid shape, membrane deformation and anesthesia. Biophysical J 86, 370A.

    Google Scholar 

  • Markin VS and Sachs F (2004b) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124.

    CAS  Google Scholar 

  • Markin VS, Shlenskii VG, Saimon SA, Benos DD, Ismailov II (2006) Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension. Biofizika 51(6):1014–1018 (Russian).

    PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol 7:1443–1446.

    Google Scholar 

  • Martinac B (2001) Mechanosensitive channels in prokaryotes. Cell Physiol Biochem 11:61–76.

    PubMed  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460.

    PubMed  CAS  Google Scholar 

  • Martinac B and Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc. Natl. Acad. Sci. USA 99:4308–4312.

    PubMed  CAS  Google Scholar 

  • Martinac B and Kloda A (2003) Evolutionary origins of mechanosensitive ion channels. Prog Biophys Mol Biol 82:11–24.

    PubMed  CAS  Google Scholar 

  • Martinac B, Adler J and Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348: 261–263.

    PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    PubMed  CAS  Google Scholar 

  • Mazzag BM, Tamaresis JS, Barakat AI (2003) A model for shear stress sensing and transmission in vascular endothelial cells. Biophys J 84:4087–4101.

    PubMed  CAS  Google Scholar 

  • McBride DW Jr, Hamill OP (1992) Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pflügers Arch - Eur J Physiol 421:606–612.

    Google Scholar 

  • McBride DW Jr, Hamill OP (1993) Pressure-clamp technique for measurement of the relaxation kinetics of mechanosensitive channels. Trends Neurosci 16:341–345.

    PubMed  Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373.

    PubMed  CAS  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113:93–107.

    PubMed  CAS  Google Scholar 

  • Morris CE (1992) Are stretch-sensitive channels in molluscan cells and elsewhere physiological mechanotransdueers? Experientia 48: 852–858.

    PubMed  CAS  Google Scholar 

  • Morris CE and Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179(2):79–102.

    PubMed  CAS  Google Scholar 

  • Niisato N, Ito Y, Marunaka Y (1999) Activation of Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. Biochem Biophys Res Commun 254:368–371.

    PubMed  CAS  Google Scholar 

  • Opsahl LR and Webb WW (1994) Lipid-glass adhesion in giga-sealed patch clamped membranes. Biophys J 66:75–79.

    PubMed  CAS  Google Scholar 

  • Perozo E and Rees DC (2003) Structure and mechanism in prokaryotic mecahnosensitive channels. Curr Opin Struct Biol 13: 432–442.

    PubMed  CAS  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A and Martinac B (2002a) Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature 418: 942–948.

    CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM and Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9: 696–703.

    CAS  Google Scholar 

  • Petroff MGV, Kim SH, Pepe S etal. (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873.

    PubMed  CAS  Google Scholar 

  • Petrov E and Martinac B. (2007) Modulation of channel activity and gadolinium block of MscL by static magnetic fields. Eur Biophys J 36(2):95–105.

    PubMed  CAS  Google Scholar 

  • Ring A (1992) Monitoring the surface tension of lipid membranes by a bubble method. Pflü gers Arch - Eur J Physiol 420: 264–268.

    CAS  Google Scholar 

  • Ring A and Sandblom J (1988) Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. Biophys J 53: 541–548.

    PubMed  CAS  Google Scholar 

  • Ruknudin A, Song MJ, Sachs F (1991) The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J Cell Biol 112:125–134.

    PubMed  CAS  Google Scholar 

  • Sachs F and Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells Rev Physiol Biochem Pharmacol 132: 1–77.

    PubMed  CAS  Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological systems. Crit Rev Biomed Eng 16(2):141–169.

    PubMed  CAS  Google Scholar 

  • Sackin H (1995) Mechanosensitive channels Annu Rev Physiol 57:333–353.

    PubMed  CAS  Google Scholar 

  • Saeki Y, Kurihara S, Hongo K, Tanaka E (1993) Tension and intracellular calcium transients of activated ferret ventricular muscle in response to step length changes. Adv Exp Med Biol 332:639–648.

    PubMed  CAS  Google Scholar 

  • Saimi Y, Martinac B, Delcour AH, Minorsky PV, Gustin MC, Culbertson MR, AdierJ, Kung C (1993) Patch clamp studies of microbial ion channels. Methods Enzymol 207: 681–691

    Google Scholar 

  • Saimi Y, Martinac B, Gustin M, Culbertson MR, Adler J, Kung C (1988) Ion channels in Paramecium, yeast and Escherichia coli. Trends Biochem Sci 13(8):304–309.

    PubMed  CAS  Google Scholar 

  • Sakmann B and Neher E (1983) Geometric Parameters of Pipettes and Membrane Patches. In: Single-Channels Recording. Plenum Press, New York. A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y.10013. 700 pp.637–650.

    Google Scholar 

  • Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn.J.Physiol 42:957–970.

    PubMed  CAS  Google Scholar 

  • Sharma RV, Chapleau MW, Hajduczok G, Wachtel RE, Waite LJ, Bhalla RC, Abboud FM (1995) Mechanical stimulation increases intracellular calcium concentration in nodose sensory neurons. Neurosci 66: 433–441.

    CAS  Google Scholar 

  • Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chik heart: role of stretch-activated ion channels. Am J Physiol 262: H1110–H1115.

    PubMed  CAS  Google Scholar 

  • Sigurdson WJ, Sachs F, Diamond SL (1993) Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol 264: H1745–H1752.

    PubMed  CAS  Google Scholar 

  • Sokabe M and Sachs F (1990). The structure and dynamics of patch clamped membrane, a study using differential interference contrast microscopy. J Cell Biol 111, 599–606.

    PubMed  CAS  Google Scholar 

  • Sokabe M, Nunogaki K, Naruse K, Soga H (1993) Mechanics of patch clamped and intact cell-membranes in relation to SA channel activation. Jpn J Physiol 43:S197–S204.

    PubMed  Google Scholar 

  • Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes, stress, strain, capacitance and stretch channel activation. Biophys J 59, 722–728.

    PubMed  CAS  Google Scholar 

  • Sollott SJ, Lakatta EG (1994) Novel method to alter length and load in isolated mammalian cardiac myocytes. Am J Physiol Heart Circ Physiol 267:H1619–H1629.

    CAS  Google Scholar 

  • Suchyna TM and Sachs F (2007) Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J Physiol (Lond) (in press).

    Google Scholar 

  • Suchyna TM, Tape SE, Koeppe RE, Andersen OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430: 235–240.

    PubMed  CAS  Google Scholar 

  • Sukahrev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the E. coli cell envelope: Solubilization and functional reconstitution. Biophys J 65:177–183.

    Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel in Escherichia coli (MscS): the subunit structure, conduction and gating characteristics. Biophys J 83:290–298.

    PubMed  CAS  Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409: 720–724.

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR and Kung C (1994) A large mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265–268.

    PubMed  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260: 1124–1127.

    PubMed  CAS  Google Scholar 

  • Wellner MC and Isenberg G (1993) Properties of stretch activated channels in myocytes from the guinea-pig urinary bladder. J Physiol (London) 466:412–425.

    Google Scholar 

  • Wellner MC and Isenberg G (1994) Stretch effects on whole-cell currents of guinea-pig urinary bladder myocytes J Physiol (London) 480.3: 439–448.

    Google Scholar 

  • Wellner MC and Isenberg G (1995) cAMP accelerates the decay of stretch-activated inward currents in guinea-pig urinary bladder myocytes. J Physiol (London) 482:141–156.

    CAS  Google Scholar 

  • White E, Boyett MR, Orchard CH (1995) The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol (Lond ) 482:93–107.

    CAS  Google Scholar 

  • White E, Le Guennec IY, Nigretto JM, Gannier F, Argibay JA, Gamier D (1993) The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol 78: 65–78.

    PubMed  CAS  Google Scholar 

  • Wiggins P and Phillips R (2004) Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci USA 101(12):4071–4076.

    PubMed  CAS  Google Scholar 

  • Wiggins P and Phillips R (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88: 880–902.

    PubMed  CAS  Google Scholar 

  • Xia SL, Ferrier J (1995) A calcium signal induced by mechanical pertubation of osteoclasts. JCellular Physiol 167: 148–155

    Google Scholar 

  • Zeng T, Bett GCL, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278: H548–H557.

    CAS  Google Scholar 

  • Zhang Y and Hamill OP (2000) On the discrepancy between membrane patch and whole cell mechanosensitivity in Xenopus oocytes. J Physiol (Lond) 523.1:101–115.

    Google Scholar 

  • Zhang Y, Gao F, Popov V,Wan J, Hamill OP (2000) Mechanically-gated channel activity in cytoskeleton deficient blebs and vesicles from Xenopus oocytes. J Physiol (Lond) 523.1: 117–129.

    Google Scholar 

  • Zhou XL, Stumpf MA, Hoch HC, Kung C (1991) A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253: 1415–1417.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Kamkin, A., Kiseleva, I., Lozinsky, I. (2008). Experimental Methods of Studying Mechanosensitive Channels and Possible Errors in Data Interpretation. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_1

Download citation

Publish with us

Policies and ethics