Skip to main content

Immune Effector Cells in the Tumor Microenvironment: Their Role in Regulation of Tumor Progression

  • Chapter
Innate and Adaptive Immunity in the Tumor Microenvironment

Part of the book series: The Tumor Microenvironment ((TTME,volume 1))

Immune effector cells have the ability to eliminate malignant cells and thus regulate tumor progression. However, immune cells in the tumor microenvironment are dysfunctional, generally fail to control tumor growth and may even promote its progression. Molecular mechanisms responsible for tumor-induced local and systemic immune suppression are currently under intense scrutiny. It appears that tumors can deregulate recruitment, effector functions and survival of immune cells, interfering with all stages of antitumor response. Suppressive mechanisms targeting key signaling pathways in immune cells have been identified. Strategies for reversal of tumor-mediated immunsuppression are being developed. Understanding of multiple and varied mechanisms used by tumors to escape immune surveillance is crucial for the future design of more effective antitumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalamian M, Pirtskhalaishvili G, Nunez A, Esche C, Shurin GV, Huland E, Huland H, Shurin MR. Human prostate cancer inhibits maturation of monocyte-derived dendritic cells. Prostate, 46: 68–75, 2001.

    PubMed  Google Scholar 

  2. Abrahams VM, Straszewski SL, Kamsteeg M, Hanczaruk B, Schwartz PE, Rutherford TJ, Mor G. Epithelial ovarian cancer cells secrete Fas ligand. Cancer Res., 63: 5573–5581, 2003.

    PubMed  Google Scholar 

  3. Adriance MC, Gendler SJ. Downregulation of Muc1 in MMTV-c-Neu tumors. Oncogene, 23(3): 697–705, 2004.

    PubMed  Google Scholar 

  4. Aggarwal BB. Nuclear factor-AB: the enemy within. Cancer Cell, 6: 203–208, 2004.

    PubMed  Google Scholar 

  5. Albers A, Schaefer C, Kirkwood JM, Gooding W, DeLeo AB, Whiteside TL. Spontaneous apoptosis of epitope-specific CD8+ tetramer+ T lymphocytes in the peripheral circulation of patients with cancer. Submitted, 2007.

    Google Scholar 

  6. Albers AE, Kim GG, Ferris RL, Chikamatsu K, DeLeo AB, Whiteside TL. Immune responses to p53 in patients with cancer enrichment in tetramer+ p53 peptide-specific T cells and regulatory CD4+ CD25+ cells at tumor sites. Cancer Immunol Immunother, 54: 1072–1081, 2005.

    PubMed  Google Scholar 

  7. Albers AE, Visus C, Tsukishiro T, Ferris RL, Gooding, W, Whiteside TL, DeLeo AB. Alterations in the T-cell receptor variable A gene-restricted profile of CD8+ T lymphocytes in the peripheral circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res, 12: 2394–2403, 2006.

    Google Scholar 

  8. Alleva C, Berger C, Elgert K. Tumor-induced regulation of suppression macrophage nitric oxide and TNF-A production. Role of tumor-derived IL-10, TGF- and PGE2. J Immunol, 153:1674–1685, 1994.

    Google Scholar 

  9. Allison J, Georgiou HM, Strausser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. PNAS USA, 94: 3943–3947, 1997.

    Google Scholar 

  10. Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppressionin cancer. J Immunol, 166: 678–689, 2001.

    PubMed  Google Scholar 

  11. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res, 6: 1755–1766, 2000.

    PubMed  Google Scholar 

  12. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, Stringaro A, Molinari A, Arancia G, Gentile M, Parmiani G, Fais S. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med, 195: 1303–1316, 2002.

    PubMed  Google Scholar 

  13. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet, 357: 539–545, 2001.

    PubMed  Google Scholar 

  14. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 392: 245–252, 1998.

    PubMed  Google Scholar 

  15. Baniyash M. Chronic inflammation, immunosuppression and cancer: novel insights and outlook. Sem Cancer Biol, 16: 80–88, 2006.

    Google Scholar 

  16. Battaglia M, Stabilini A, Migliavacca B, Horejs-Hoeck J, Kaupper T, Roncarolo MG. Rapamycin promotes expansion of functional CD4+ CD25+ Foxp3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol, 177: 8338–8347, 2006.

    PubMed  Google Scholar 

  17. Bauernhofer T, Kuss I, Henderson B, Baum AS, Whiteside TL. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur J Immunol, 33: 119–124, 2003.

    PubMed  Google Scholar 

  18. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunother, In Press, 2007.

    Google Scholar 

  19. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion of human T regulatory type 1 cells in the microenvironment of COX-2 overexpressing head and neck squamous cell carcinoma. Submitted, 2007.

    Google Scholar 

  20. Berke G. The CTL’s kiss of death. Cell, 81: 9–11, 1995.

    PubMed  Google Scholar 

  21. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA. The origin of the cancer stem cell: current controversies and new insights. Nat Cancer, 5: 899–904, 2005.

    Google Scholar 

  22. Bodmer JL, Holler N, Reynards S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol, 2: 241–243, 2000.

    PubMed  Google Scholar 

  23. Bronte V, Serafini P, Mazzoni A, Segal D, Zanovello P. L-arginine metabolism in myeloid cells controls T lymphocyte functions. Trends Immunol, 6: 301–305, 2003.

    Google Scholar 

  24. Bukowski RM, Rayman P, Uzzo R, Bloom T, Sandstrom K, Peereboom D, Olencki T, Budd GT, McLain D, Elson P, Novick A, Finke JH. Signal transduction abnormalities in T lymphocytes from patients with advanced renal cell carcinoma: clinical relevance and effects of cytokine therapy. Clin Cancer Res, 4: 2337–2347, 1998.

    PubMed  Google Scholar 

  25. Campoli M, Chang G-C, Ferrone S. HLA-class I antigen loss, tumor immune escape and immune selection. Vaccine, 20: A40–A45, 2002.

    PubMed  Google Scholar 

  26. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol, 3: 237–243, 2002.

    PubMed  Google Scholar 

  27. Chaput N, Taieb J, Schartz N, Flament C, Novault S, Andre F, Zitvogel L. The potential of exosomes in immunotherapy of cancer. Blood Cells Mol Dis, 35: 111–115, 2005.

    PubMed  Google Scholar 

  28. Chen YL, Chen SH, Wang JY, Yang BC. Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol, 171:1183–1191, 2003.

    PubMed  Google Scholar 

  29. Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science, 230:453–455, 1985.

    PubMed  Google Scholar 

  30. Ciccinnati VR, Dworacki G, Albers A, Beckebaum S, Tuting T, Daczmarek E, DeLeo AB. Impact of p53-based immunization on primary chemically-induced tumors. Int J Cancer, 113: 961–970, 2005.

    Google Scholar 

  31. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 10: 942–949, 2004.

    PubMed  Google Scholar 

  32. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Immunol, 5: 112–124, 2005.

    Google Scholar 

  33. DeLeo AB. p53-based immunotherapy of cancer. In: Teicher B (ed). Cancer Drug Discovery and Development, Humana Press, Totowa, NJ, pp. 491–505, 2005.

    Google Scholar 

  34. DeMaria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R. Requirement for GD3 ganglioside in CD95-and ceramide-induced apoptosis. Science, 277:1652–1655, 1997.

    Google Scholar 

  35. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+) CD25(+) T cells with regulatory properties from human blood. J Exp Med, 193: 1303–1310, 2001.

    PubMed  Google Scholar 

  36. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA, 90: 3539–3543, 1993.

    PubMed  Google Scholar 

  37. Esche C, Lokshin A, Shurin G, Gastman BR, Rabinovich H, Lotze MT, Shurin MR. Tumors’ other immune targets: Dendritic cells. J Leukoc Biol, 66: 336–344, 1999.

    PubMed  Google Scholar 

  38. Esche C, Shurin GV, Kirkwood JM, Wang GQ, Rabinowich H, Pirtskhalaishvili G, Shurin MR. TNF-E-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediated resistance of mature dendritic cells to melanoma-induced apoptosis. Clin Cancer Res, 7: 974s–979s, 2001.

    PubMed  Google Scholar 

  39. Faria AM, Weiner H. Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets, 5: 179–190, 2006.

    PubMed  Google Scholar 

  40. Ferguson TA, Green DR. Fas ligand and immune privilege: the eyes have it. Cell Death Differ, 8: 771–772, 2001.

    PubMed  Google Scholar 

  41. Ferris RL, Hunt JL, Ferrone S. Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res, 33: 113–133, 2005.

    PubMed  Google Scholar 

  42. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen processing machinery in head and neck cancer. Clin Cancer Res, 12: 3890–3895, 2006.

    PubMed  Google Scholar 

  43. Finke JH, Zea AH, Stanley J, Longo DL, Mizoguchi H, Tubbs RR, Wiltrout RH, O’Shea JJ, Kudous, Klein E, Bukowski RM, Ochoa A. Loss of T-cell receptor. chain and p56lck in T-cell infiltrating human renal cell carcinoma. Cancer Res, 53: 5613–5616, 1993.

    Google Scholar 

  44. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92: 4150–4166, 1998.

    Google Scholar 

  45. Gabrilovich DI. Mechanisms and functional significance of tumor-induced dendritic cell differentiation in cancer. Nat Rev Immunol, 4: 941–952, 2004.

    PubMed  Google Scholar 

  46. Gabrilovich DI, Chen HL, Girgis KR, Cunningham T, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med, 2: 1096–1103, 1996.

    PubMed  Google Scholar 

  47. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol, 6: 383–393, 2006.

    PubMed  Google Scholar 

  48. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118: 285–96, 2004.

    PubMed  Google Scholar 

  49. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 270: 1189–1192, 1995.

    PubMed  Google Scholar 

  50. Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med, 184: 19–29, 1996.

    PubMed  Google Scholar 

  51. Haefner B. The transcription factor NF-HB as drug target. Prog Med Chem, 43: 137–188, 2005.

    PubMed  Google Scholar 

  52. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier LE, French P, Schneider T, Bornand A, Fontana A, Lienard D, Cerottini J-C, Tschopp J. Melanoma cell expression of Fas (Apo-1/CD95) ligand: Implications for tumor immune escape. Science, 274: 1363–1366, 1996.

    PubMed  Google Scholar 

  53. Hamerman JA, Ogasawara K, Lanier LL. NK cells in innate immunity. Curr Opin Immunol, 17: 29–35, 2005.

    PubMed  Google Scholar 

  54. Haraguchi S, Good RA, James-Yarish M, Cianciolo GJ, Day NK. Differential modulation of Th1- and Th2-related cytokine mRNA expression by a synthetic peptide homologous to a conserved domain within retroviral envelope protein. Immunology, 92: 3611–3615, 1995.

    Google Scholar 

  55. Hoffmann TK, Donnenberg AD, Finkelstein SD, Donnenberg VS, Friebe-Hoffmann F, Myers EN, Appella E, DeLeo AB, Whiteside TL. Frequencies of tetramer+ T cells specific for the wild-type sequence p53264–272 peptide in the circulations of patients with head and neck cancer. Cancer Res, 62: 3521–3529, 2002.

    PubMed  Google Scholar 

  56. Hoffmann TK, Dworacki G, Meidenbauer N, Gooding W, Johnson JT, Whiteside TL. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res, 8: 2553–2562, 2002.

    PubMed  Google Scholar 

  57. Hoffmann TK, Muller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res, 8: 1787–1793, 2002.

    PubMed  Google Scholar 

  58. Hoffmann TK, Nakano K, Elder E. Dworacki G, Finkelstein SD, Apella E, Whiteside TL and DeLeo AB. Generation of T cells specific for the wild-type sequence p53264–272 peptide in cancer patients–implication for immunoselection of epitope-loss variants. J Immunol, 165: 5938–5944, 2000.

    Google Scholar 

  59. Houghton AN, Guevara-Patino JA. Immune recognition of self in immunity against cancer. J Clin Invest, 114: 468–471, 2004.

    PubMed  Google Scholar 

  60. Huff CA, Matsui WH, Douglas Smith B, Jones RJ. Strategies to eliminate cancer stem cells: Clinical implications. Eur J Cancer, In Press, 2006.

    Google Scholar 

  61. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape fromhost immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA, 99: 12293–12297, 2002.

    PubMed  Google Scholar 

  62. Jaeger E, Bernahrd H, Romero P, Ringhoffer M, Arand M, Karbach J, Ilsemann C, Hagedorn M, Knuth A. Generation of cytotoxic T-cell responses with synthetic peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int J Cancer, 66:162–169, 1996.

    PubMed  Google Scholar 

  63. Jaeger E, Ringhoffer M, Dienes HP, et al. Granulocyte-macrophage colony stimulating factor enhances immune responses to melanoma-associated peptides. Int J Cancer, 67: 54–62, 1996.

    Google Scholar 

  64. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med, 192: 1213–1222, 2000.

    PubMed  Google Scholar 

  65. Katsenelson NS, Shurin GV, Bykovskaia SN, Shogan J, Shurin MR. Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Modern Path, 14: 40–45, 2001.

    Google Scholar 

  66. Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S. Fas expression and function in normal and malignant breast cell lines. Cancer Res, 56: 4791–4798, 1996.

    PubMed  Google Scholar 

  67. Khong HT, Wang QJ, Rosenberg SA. Identifications of multiple antigens recognized by tumor infiltrating lymphocytes form a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother, 27: 184–190, 2004.

    PubMed  Google Scholar 

  68. Kim J-W, Ferris RL, Whiteside TL. Chemokine receptor 7 (CCR7) expression and protection of circulating CD8+ T lymphocytes from apoptosis. Clin Cancer Res, 11: 7901–7910, 2005.

    PubMed  Google Scholar 

  69. Kim, J-W, Tsukishiro, T, Johnson JT, Whiteside TL. Expression of pro- and anti-apoptotic proteins in circulating CD8+ T cells of patients with squamous cell carcinoma of the head and neck (SCCHN). Clin Cancer Res, 10: 5101–5110, 2004.

    Google Scholar 

  70. Kim J-W, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. FasL+ membraneous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res, 11: 1010–1020, 2005.

    PubMed  Google Scholar 

  71. Kreuz S, Siegmund D, Rumpf J-J, Samel D, Leverkus M, Janssen O, Hacker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wayant H. NFKB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol, 166: 369–380, 2004.

    PubMed  Google Scholar 

  72. Kuss I, Saito T, Johnson JT, Whiteside TL. Clinical significance of decreased zeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res, 5: 329–334, 1999.

    PubMed  Google Scholar 

  73. Kuss I, Hathaway B, Ferris RL, Gooding W, Whiteside TL. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res, 10: 3755–3762, 2004.

    PubMed  Google Scholar 

  74. Kuss I, Schaefer C, Godfrey TE, Ferris RL, Harris J, Gooding W, Whiteside TL. Recent thymic emigrants and subsets of naïve and memory T cells in the circulation of patients with head and neck cancer. Clin Immunol, 116: 27–36, 2005.

    PubMed  Google Scholar 

  75. Lang S, Atarashi Y, Nishioka Y, Stanson J, Meidenbauer N, Whiteside TL. B7.1 on human carcinomas: costimulation of T cells and enhanced tumor-induced cell death. Cell Immunol, 201: 132–143, 2000.

    Google Scholar 

  76. Lanier LL. NK cell recognition. Annu Rev Immunol, 23: 225–274, 2005.

    PubMed  Google Scholar 

  77. Lee J-C, Lee K-M, Kim D-W, Heo SD. Elevated TGF-l1 secretion and down-modulation of NK62D underlies impaired NK cytotoxicity in cancer patients. J Immunol, 172: 7335–7340, 2004.

    PubMed  Google Scholar 

  78. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigen environment. Annu Rev Immunol, 17: 221–253, 1999.

    PubMed  Google Scholar 

  79. Levings MK, Roncarolo MG. Phenotypic and functional differences between human CD4+ CD25+ and type 1 regulatory T cells. Curr Top Microbiol Immunol, 293: 303–326, 2005.

    PubMed  Google Scholar 

  80. Levings MK, Sangregorio R, Galbiati F, Squadrone R, deWaal Malefyt R, Roncarolo MG. IFN-alpha and IL-10 induce differentiation of human type 1 T regulatory cells. J Immunol, 166: 5530–5539, 2001.

    Google Scholar 

  81. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC, Roncarolo MG. Human CD25+ CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med, 196: 1335–1346, 2002.

    PubMed  Google Scholar 

  82. Li X, Liu J, Park J-K, Hamilton TA, Rayman P, Klein E, Edinger M, Tubbs RR, Bukowski R, Finke J. T cells from renal cell carcinoma patients exhibit an abnormal pattern of NFtB specific DNA binding activity. Cancer Res, 54: 5424–5429, 1994.

    PubMed  Google Scholar 

  83. Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-rB is the lynchpin. Trends Immunol, 26: 318–325, 2005.

    PubMed  Google Scholar 

  84. Liyanage UK, Moore TT, Joo H-G, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 169: 2756–2761, 2002.

    PubMed  Google Scholar 

  85. Ljunggren HG, Karre K. In search of the “missing self”: MHC molecules and NK recognition. Immunol Today, 11: 237–244, 1990.

    PubMed  Google Scholar 

  86. Lopez CB, Rao TD, Feiner H, Shapiro R, Marks JR, and Frey AB. Repression of interleukin-2 mRNA translation in primary human breast carcinoma tumor-infiltrating lymphocytes. Cell Immunol, 190:141–155, 1998.

    PubMed  Google Scholar 

  87. Lopez-Albaitero A, Nayak JV, Ogino T, Machandia A, Gooding W, DeLeo AB, Ferrone S, Ferris RL. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol, 176: 3402–3409, 2006.

    PubMed  Google Scholar 

  88. Lotze MT, DeMarco RA. Dying dangerously: necrotic cell death and chronic inflammation promote tumor growth. Discovery Med, 4: 448–456, 2004.

    Google Scholar 

  89. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-kappa B in cancer cells converts inflammation-induced tumor growth mediated by TNF alpha to TRAIL-mediated tumor regression. Cancer Cell, 6: 297–305, 2004.

    PubMed  Google Scholar 

  90. Lybarger L, Wang X, Harris M, Hansen TH. Viral immune evasion molecules attack the ER peptide-loading complex and exploit ER-associated degradation pathways. Curr Opin Immunol, 17: 71–78, 2005.

    PubMed  Google Scholar 

  91. Mabjeesh NJ, Amir S. Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol, 22: 559–572, 2007.

    PubMed  Google Scholar 

  92. Malmberg K-J, Ljunggren H-G. Escape from immune and non-immune tumor surveillance. Sem Cancer Biol, 16: 16–31, 2006.

    Google Scholar 

  93. Mann B, Gratchev A, Bohm C, Hanski ML, Foss HD, Demel G, Trojanek B, Schmidt-Wolf I, Stein H, Riecken EO, Buhr HJ, Hanski C. FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer, 79: 1262–1269, 1999.

    PubMed  Google Scholar 

  94. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today, 13: 265–270, 1992.

    PubMed  Google Scholar 

  95. Mantovani A. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab Invest, 71: 5–16, 1994.

    PubMed  Google Scholar 

  96. Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, Cascinelli N, Bourlond A, Vanwijck R, Humblet Y, et al. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer, 63: 883–885, 1995.

    PubMed  Google Scholar 

  97. Martinez-Lorenzo MJ, Alva MA, Gamen S, Kim KJ, Chuntharapai A, Pineiro A, Naval J, Anel A. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. Eur J Immunol, 28: 2714–2725, 1998.

    PubMed  Google Scholar 

  98. Matsuda M, Petersson M, Lenkei R, Raupin J-L, Magnusson I, Mellstedt H, Anderson P, Kiessling R. Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer, 61: 765–772, 1995.

    PubMed  Google Scholar 

  99. Mayordomo JI, Loftus DJ, Sakamoto H, Lotze MT, Storkus WJ, Appella E, DeLeo AB. Therapy of murine tumors with dendritic cells pulsed with p53 wild type and mutant sequence peptides. J Exp Med, 183: 1357–1365, 1996.

    PubMed  Google Scholar 

  100. McCawley LJ, Martisian LM. Tumor progression: defining the soil round the tumor seed. Curr Biol, 11: R25–R27, 2001.

    PubMed  Google Scholar 

  101. Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med, 190: 1033–1038, 1999.

    PubMed  Google Scholar 

  102. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 114: 181–190, 2003.

    PubMed  Google Scholar 

  103. Miwa K, Asano M, Horai R, Lwakura Y, Nagata S, Suda T. Caspase 1-independent IL-1 beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med, 4: 1287–1292, 1998.

    PubMed  Google Scholar 

  104. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa A. Alterations in signal transduction molecules in T lymphocytes from tumor bearing mice. Science, 258: 1795–1798, 1992.

    PubMed  Google Scholar 

  105. Mocellin S, Ohnmacht GA, Wang E, Marincola FM. Kinetics of cytokine expression in melanoma metastases classifies immune responsiveness. Int J Cancer, 93: 236–242, 2001.

    PubMed  Google Scholar 

  106. Morisaki T, Matsumoto K, Onishi H, Kuroki H, Baba E, Tasaki A, Kubo M, Nakamura M, Inaba S, Yamaguchi K, Tanaka M, Katano M. Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives. Hum Cell, 16: 175–182, 2003.

    PubMed  Google Scholar 

  107. Munn DH. Indoleamine 2.3 dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol, 18: 220–225, 2006.

    Google Scholar 

  108. Nagata S, Goldstein P. The Fas death factor. Science, 267: 1449–1456, 1995.

    PubMed  Google Scholar 

  109. Natali PG, Bigotti A, Nicotra MR, Viora M, Manfredi D, Ferrone S. Distribution of human class I (HLA-A,-B,-C) histocompatibility antigens in normal and malignant tissues of non-lymphoid origin. Cancer Res, 44: 4679–4687, 1984.

    PubMed  Google Scholar 

  110. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, Isaacs JD, Lechler RI. Human CD4(+) CD25(+) cells: a naturally occurring population of regulatory T cells. Blood, 98: 2736–2744, 2001.

    PubMed  Google Scholar 

  111. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Kanpp DJ, Green DR, Kratzke RA. Human lung carcinomas express Fas ligand. Cancer Res, 57: 1007–1012, 1997.

    PubMed  Google Scholar 

  112. O’Connell J, Bennett MW, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: a molecular mechanism of tumor immune privilege. Mol Med, 3: 294–300, 1997.

    PubMed  Google Scholar 

  113. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med, 184: 1075–1082, 1996.

    PubMed  Google Scholar 

  114. Ogino T, Bandoh N, Hayashi T, Miyokawa N, Harabuchi Y, Ferrone S. Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin Cancer Res, 9: 4043–4051, 2003.

    PubMed  Google Scholar 

  115. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol, 27: 195–201, 2006.

    PubMed  Google Scholar 

  116. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res, 1: 95–103, 1995.

    PubMed  Google Scholar 

  117. Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola RM, Anichini A. Cancer immunotherapy with peptide-based vaccines: what have we achieved: where are we going? J Nat Cancer Inst, 94: 805–818, 2002.

    PubMed  Google Scholar 

  118. Parry RV, Chemnitz JM, Frauwieth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol, 25: 9543–9553, 2005.

    PubMed  Google Scholar 

  119. Perkins ND. NF-PB: tumor promoter or suppressor? Trends Cell Biol, 14: 64–69, 2004.

    PubMed  Google Scholar 

  120. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 10: 26–35, 2003.

    PubMed  Google Scholar 

  121. Piali L, Fichtel A, Terpe H-J, Imhof BA, Gisler RH. Endothelial vascular adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med, 181: 811–816, 1995.

    PubMed  Google Scholar 

  122. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-KappaB functions as tumour promoter in inflammation-associated cancer. Nature, 431: 461–466, 2004.

    PubMed  Google Scholar 

  123. Pirtskhalaishvili G, Gambotto A, Esche C, Yurkovetsky ZR, Lotze MT, Shurin MR. IL-12 and Bcl-xl gene transfection of murine dendritic cells protects them from prostate cancer-induced apoptosis and improves their antitumor activity. J Urol, 163: 105, 2000.

    Google Scholar 

  124. Pirtskhalaishvili G, Shurin GV, Esche C, Salup RR, Lotze MT, Shurin MR. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br J Cancer, 83: 506–513, 2000.

    PubMed  Google Scholar 

  125. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottine JC, Romero P. High frequencies of naïve Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen HLA-A2 individuals. J Exp Med, 190: 705–715, 1999.

    PubMed  Google Scholar 

  126. Poggi A, Massaro AM, Negrini S, Contini P, Zocchi MR. Tumor-induced apoptosis of human IL-2 activated NK cells: role of natural cytotoxicity receptors. J Immunol, 174: 2653–60, 2005.

    PubMed  Google Scholar 

  127. Rabinowich H, Vitolo D, Altarac S, Herberman RB, Whiteside TL. Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells. J Immunol, 149: 340–349, 1992.

    PubMed  Google Scholar 

  128. Rabinowich H, Suminami Y, Reichert TE, Crowley-Nowick P, Bell M, Edwards R, Whiteside TL. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. Int J Cancer, 68: 276–284, 1996.

    PubMed  Google Scholar 

  129. Rabinowich H, Reichert TE, Kashii Y, Bell MC, Whiteside TL. Lymphocyte apoptosis induced by Fas ligand-expressing ovarian carcinoma cells: implications for altered expression of TcR in tumor-associated lymphocytes. J Clin Invest, 101: 2579–2588, 1998.

    PubMed  Google Scholar 

  130. Reichert TE, Rabinowich H, Johnson JT, Whiteside TL. Human immune cells in the tumor microenvironment: mechanisms responsible for signaling and functional defects. J Immunother, 21: 295–306, 1998.

    PubMed  Google Scholar 

  131. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res, 8: 3137–3145, 2002.

    PubMed  Google Scholar 

  132. Reichert TE, Day R, Wagner E, Whiteside TL. Absent or low expression of the R chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res, 58: 5344–5347, 1998.

    PubMed  Google Scholar 

  133. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother, 50: 51–59, 2001.

    Google Scholar 

  134. Rivoltini L, Canese P, Huber V, Iero M, Pilla L, Valenti R, Fais S, Lozupone F, Casati C, Castelli C, Parmiani G. Escape strategies and reasons for failure in the interaction between tumor cells and immune system: how can we tilt the balance towards immune-mediated cancer control. Exp Opin Biol Ther, 5: 463–476, 2005.

    Google Scholar 

  135. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev, 188: 97–113, 2002.

    PubMed  Google Scholar 

  136. Rodriguez PC, Ochoa AC. T cell dysfunction in cancer: Role of myeloid cells and tumor cells regulating amino acit availability and oxidative stress. Sem Cancer Biol, 16: 66–72, 2006.

    Google Scholar 

  137. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med, 10: 909–915, 2004.

    PubMed  Google Scholar 

  138. Sahin U, Turecio P, Pfzeundschuch M. Serological identification of human tumor antigens. Curr Opin Immunol, 9: 709–716, 1997.

    PubMed  Google Scholar 

  139. Saito T, Dworacki G, Gooding W, Lotze M, Whiteside TL. Mononuclear cells undergo spontaneous ex vivo apoptosis in the peripheral blood of patients with metastatic melanoma. Clin Cancer Res, 6: 1351–1364, 2000.

    PubMed  Google Scholar 

  140. Saito T, Kuss I, Dworacki G, Gooding W, Johnson JT, Whiteside TL. Spontaneous ex vivo apoptosis of peripheral blood mononuclear cells in patients with head and neck cancer. Clin Cancer Res, 5: 1263–1273, 1999.

    PubMed  Google Scholar 

  141. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev, 182: 18–32, 2001.

    PubMed  Google Scholar 

  142. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+ CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer, 92: 913–920, 2005.

    PubMed  Google Scholar 

  143. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med, 8: S62–S67, 2002.

    PubMed  Google Scholar 

  144. Serafini P, Borello J, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties and mechanisms of immune suppression. Sem Cancer Biol, 16: 53–65, 2006.

    Google Scholar 

  145. Serafini P, DeSanto C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother, 53: 64–72, 2004.

    PubMed  Google Scholar 

  146. Shevach EM. Fatal attraction: tumors beckon regulatory T cells. Nat Med, 10: 900–901, 2004.

    PubMed  Google Scholar 

  147. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol, 2: 389–400, 2002.

    PubMed  Google Scholar 

  148. Shevach EM. Regulatory T cells in autoimmmunity. Annu Rev Immunol, 18: 423–449, 2000.

    PubMed  Google Scholar 

  149. Shurin GV, Shurin MR, Lotze MT, Barksdale EM. Gangliosides mediate neuroblastoma-induced inhibition of dendritic cell generation. Cancer Res, 61: 363–369, 2001.

    PubMed  Google Scholar 

  150. Shurin MR, Esche C, Lokshin A, Lotze MT. Tumors induce apoptosis of dendritic cells in vitro. J Immunother, 20: 403, 1997.

    Google Scholar 

  151. Shurin MR, Gabrilovich DI. Regulation of dendritic cell system by tumor. Cancer Res Ther Control, 11: 65–78, 2001.

    Google Scholar 

  152. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-S in homeostasis and cancer. Nat Rev Cancer, 3: 807–821, 2003.

    PubMed  Google Scholar 

  153. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene, 23: 7267–7273, 2004.

    PubMed  Google Scholar 

  154. Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol, 5: 712–721, 2005.

    PubMed  Google Scholar 

  155. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol, 6: 17–21, 2001.

    Google Scholar 

  156. Steinman RM. Dendritic cells and immune-based therapies. Exp Hematol, 24: 859–862, 1996.

    PubMed  Google Scholar 

  157. Strand S, Vollmer P, Van den Abeelen L, Gottfried D, Alla V, Heid H, Kuball J, Theobald M, Galle PR, Strand D. Cleavage of CD95 by matrix metaboproteinase-7 induces apoptosis resistance in tumour cells. Oncogene, 23: 3732–3736, 2004.

    PubMed  Google Scholar 

  158. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson TJ, Whiteside TL. A unique subset of CD4+ CD25highFoxp3+ T cells secreting IL-10 and TGF-G1 mediates suppression in the tumor microenvironment. Clin Cancer Res, In Press, 2007.

    Google Scholar 

  159. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A. Selective expansion of naturally occurring human CD4+ CD25+ FOXP3+ regulatory T cells with rapamycin in vitro. J Immunol, 178: 320–329, 2006.

    Google Scholar 

  160. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S. Expression of the Fas Ligand in cells of T-cell lineage. J Immunol, 154: 3806–3813, 1995.

    PubMed  Google Scholar 

  161. Taieb J, Chaput N, Zitvogel L. Dendritic cell-derived exosomes as cell-free peptide-based vaccines. Crit Rev Immunol, 25: 215–223, 2005.

    PubMed  Google Scholar 

  162. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K. Involvement of tumor necrosis-related apoptosis-inducing ligand in NK-cell mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol, 214: 194–200, 2001.

    PubMed  Google Scholar 

  163. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell receptor/CD3-T by Fas Ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res, 9: 5113–5119, 2003.

    PubMed  Google Scholar 

  164. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+) CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood, 99: 3493–3499, 2002.

    PubMed  Google Scholar 

  165. Taylor PA, Lees CJ, Fournier S, Allison JP, Sharpe AH, Blazar BR. B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions. J Immunol, 172: 34–39, 2004.

    PubMed  Google Scholar 

  166. Taylor PA, Noelle RJ, Blazar BR. CD4(+) CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med, 193: 1311–1318, 2001.

    PubMed  Google Scholar 

  167. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L, Zincke H, Blute ML, Strome SE, Leibovich BC, Kwon ED. Costimulatory B7–H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA, 101: 17174–17179, 2004.

    PubMed  Google Scholar 

  168. Tourkova IL, Shurin GV, Chatta GS, Periz L, Whiteside TL, Ferrone S, Shurin MR. Restoration by IL-15 of MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol, 175: 3045–3052, 2005.

    PubMed  Google Scholar 

  169. Tsukishiro T, Donnenberg AD, Whiteside TL. Rapid turnover of the CD8+ CD28- T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol Immunother, 52: 599–607, 2003.

    PubMed  Google Scholar 

  170. Uotila P. The role of cyclic AMP and oxygen intermediates in the inhibititon of cellular immunity in cancer. Cancer Immunol Immunother, 43: 1–9, 1996.

    PubMed  Google Scholar 

  171. Uzzo R, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T, Novick AC, Bukowski RM, Hamilton T, Finke JH. Renal cell carcinoma-derived gangliosides suppress nuclear factor-fB activation in T cells. J Clin Invest, 104: 769–776, 1999.

    PubMed  Google Scholar 

  172. Uzzo RG, Clark PE, Rayman P, Bloom T, Rybicki, Novick A, Bukowski R, Finke J. Evidence that tumor inhibits NFUB activation in T lymphocytes of patients with renal cell carcinoma. JNCI, 91: 718–721, 1999.

    Google Scholar 

  173. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L. Human tumor-release microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res, 66: 9290–9298, 2006.

    PubMed  Google Scholar 

  174. Valmori D, Dutoit V, Schnuriger V, Quiquerez AL, Pittet MJ, Guillaume P, Rubio-Godoy V, Walker PR, Rimoldi D, Lienard D, Cerottini JC, Romero P, Dietrich PY. Vaccination with a Melan-A peptide selects an oligoclonal T cell population with increased functional avidity and tumor reactivity. J Immunol, 168: 4231–4240, 2002.

    PubMed  Google Scholar 

  175. Van den Broek ME, Kagi D, Zinkernagel RM, Hengartner H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol, 25: 3514–3525, 1995.

    Google Scholar 

  176. Van der Merve PA, Davis SJ. Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol, 21: 659–684, 2003.

    Google Scholar 

  177. Van Parijs L, Ibrahimov A, Abbas AK. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity, 93: 951–955, 1996.

    Google Scholar 

  178. Vieweg J, Su Z, Dahm P, Kusmartsev S. Reversal of tumor-mediated immunosuppression. Clin Cancer Res, 13: 727s–732s, 2007.

    PubMed  Google Scholar 

  179. Von Herrath MG, Harrison LC. Regulatory Lymphocytes: Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol, 3: 223–232, 2003.

    Google Scholar 

  180. Vujanovic NL. Role of TNF family ligands in antitumor activity of natural killer cells. Int Rev Immunol, 20: 415–437, 2001.

    PubMed  Google Scholar 

  181. Wajant H. CD95/FasL and TRAIL in tumour surveillance and cancer therapy. In: Dalgleish, A.G., Haefner, B. (eds). The Link Between Inflammation and Cancer. Springer, New York, pp. 141–166, 2006.

    Google Scholar 

  182. Wakkach A, Cottrez F, Groux H. Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J Immunol, 167: 3107–3113, 2001.

    PubMed  Google Scholar 

  183. Wang HY, Lee DA, Peng G. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity, 20: 107–118, 2004.

    PubMed  Google Scholar 

  184. Whiteside TL, Campoli M, Ferrone S. Tumor induced immune suppression and immune escape: mechanisms and possible solutions. In: Nagorsen E, Marincola F (eds). Analyzing T Cell Responses. Springer, pp. 43–82, 2005.

    Google Scholar 

  185. Whiteside TL, Herberman RB. The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol, 7: 704–710, 1995.

    PubMed  Google Scholar 

  186. Whiteside TL, Odoux C. Dendritic cell biology and cancer therapy. Cancer Immunol Immunother, 53: 240–248, 2004.

    PubMed  Google Scholar 

  187. Whiteside TL, Parmiani G. Tumor-infiltrating lymphocytes: their phenotype, function and clinical use. Cancer Immunol Immunother, 39: 15–21, 1994.

    PubMed  Google Scholar 

  188. Whiteside TL, Rabinowich H. The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother, 46: 175–184, 1998.

    PubMed  Google Scholar 

  189. Whiteside TL, Stanson J, Shurin MR, Ferrone S. Antigen processing machinery (APM) in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol, 173: 1526–1534, 2004.

    PubMed  Google Scholar 

  190. Whiteside TL. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy. Vaccine, 20: A46–A51, 2002.

    PubMed  Google Scholar 

  191. Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol, 111: S677–S686, 2003.

    PubMed  Google Scholar 

  192. Whiteside TL. Signaling defects in T lymphocytes of patients with malignancy. Symposium-in-writing. Cancer Immunol Immunother, 48: 346–352, 1999.

    Google Scholar 

  193. Whiteside TL. The role of immune cells in the tumor microenvironment. Cancer Treat Res, 130: 103–124, 2006.

    PubMed  Google Scholar 

  194. Whiteside TL. Tumor-induced death of immune cells: its mechanisms and consequences. Sem Cancer Biol, 12: 43–50, 2002.

    Google Scholar 

  195. Whiteside TL. Down-regulation of W chain expression in T cells: A biomarker of prognosis in cancer? Cancer Immunol Immunother, 53: 865–876, 2004.

    PubMed  Google Scholar 

  196. Whiteside TL. Exosomes in cancer and their role in tumor escape. In: Kasid Notario U, Haimovitz-Friedman Bar-Eli A (eds). Recent Developments in Cancer Research. , Research Signpost, In Press, 2007.

    Google Scholar 

  197. Whiteside TL. Tumor-infiltrating lymphocytes as antitumor effector cells. Biotherapy 5: 47–61, 1992.

    PubMed  Google Scholar 

  198. Whiteside TL. Tumor-Infiltrating Lymphocytes in Human Malignancies. R.G. Landes, Austin, TX, 1993.

    Google Scholar 

  199. Whiteside TL. The role of immune cells in the tumor microenvironment. In: Dalgleish AG, Haefner B (eds). The Link Between Inflammation and Cancer: Wounds That Do Not Heal. Springer, pp. 103–124, 2006.

    Google Scholar 

  200. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Sem Cancer Biol, 16: 3–15, 2006.

    Google Scholar 

  201. Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest, 36: 25–46, 2007.

    PubMed  Google Scholar 

  202. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea–a paradigm shift. Cancer Res, 66: 1883–1890, 2006.

    PubMed  Google Scholar 

  203. Wieckowski E, Atarashi Y, Stanson J, Sato T-A, Whiteside TL. FAP-1-mediated activation of NF-WB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem, 100: 16–28, 2007.

    PubMed  Google Scholar 

  204. Wieckowski E, Whiteside TL. Human tumor-derived vs. dendritic cell-driven exosomes have distinct biologic roles and molecular profiles. Immunol Res, 36: 247–254, 2006.

    Google Scholar 

  205. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH. Regulatory CD4(+) CD25(+) T cells in tumors from patients with early- stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res, 61: 4766–4772, 2001.

    PubMed  Google Scholar 

  206. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH. Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol, 168: 4272–4276, 2002.

    PubMed  Google Scholar 

  207. Wood KJ, Sakaguchi S. Regulatory lymphocytes: regulatory T cells in transplantation tolerance. Nat Rev Immunol, 3: 199–210, 2003.

    PubMed  Google Scholar 

  208. Xu WQ, Jiang XC, Zheng L, Yu YY, Tang JM. Expression of TGF-beta1, TGF-betaRII and Smad4 in colorectal carcinoma. Exp Mol Pathol, In Press, 2007.

    Google Scholar 

  209. Younes M, Schwartz MR, Ertan A, Finnie D, Younes A. Fas ligand expression in esophageal carcinomas and their lymph node metastases. Cancer, 88: 524–528, 2000.

    PubMed  Google Scholar 

  210. Yu P, Rowleys DA, Fu Y-X, Schreiber H. The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol, 18: 226–231, 2006.

    PubMed  Google Scholar 

  211. Zea AH, Cutri BD, Longo DL, Alvord WG, Strobl SL, Mizoguchi H, Creekmore SP, O’Shea JJ, Powers GC, Urba WJ, Ochoa AC. Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res, 1: 1327–1335, 1995.

    PubMed  Google Scholar 

  212. Zippelius A, Pittet MJ, Batard P, Rufer N, de Smedt M, Guillaume P, Ellefsen K, Valmore D, Lienard D, Plum J, MacDonald, HR, Speiser DE, Cerottini J-C, Romero P. Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J Exp Med, 195: 485–494, 2002.

    Google Scholar 

  213. Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke ML, Lotze MT, Storkus WJ. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med, 183: 87–97, 1996.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Whiteside, T.L. (2008). Immune Effector Cells in the Tumor Microenvironment: Their Role in Regulation of Tumor Progression. In: Yefenof, E. (eds) Innate and Adaptive Immunity in the Tumor Microenvironment. The Tumor Microenvironment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6750-1_1

Download citation

Publish with us

Policies and ethics