Skip to main content

Satellite Imaging for Maritime Surveillance of the European Seas

  • Chapter
Remote Sensing of the European Seas

Surveillance of ships at sea poses particular challenges for spaceborne sensors: small targets need to be detected, wide areas need to be surveyed, and both targets and background are anything but stationary. Incidental, snap-shot images find their application niches – among the existing technologies for ship monitoring – mostly in alerting to the presence of unknown targets and in surveying outlying areas. The main applications in the European seas cover fisheries control, pollution control and maritime border security, although operational use is still sporadic. The sensor of choice is SAR, because it allows ship detection over wide swaths and under many conditions. High-resolution optical sensors can provide additional information on ship classification, which is still difficult for SAR. Their narrow swaths, however, mostly limit their use to predetermined locations. Clutter from the sea surface hinders detection of the smallest ships, especially at high sea state, leading to false alarms and to less than 100% detection probability. For many applications these drawbacks can be kept within acceptable limits by proper choice of the swath width/reso- lution combination. Satellite sensors may also image ship wakes, from which information on ship speed and heading can be gleaned. Crucial to operational use is the ability for automatic analysis. This is relatively well developed for ship detection, and less well for classification and wake analysis, in SAR images, and quite immature for optical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnesen TN, Olsen RB (2004) Literature review on vessel detection. FFI/Rapport-2004/02619, ISBN-82-464-0859-3

    Google Scholar 

  • DECLIMS project (2007) Detection and Classification of Marine Traffic from Space, FP5 contr nr EVG2-CT-2002-20002, 2003-2006, http://declims.jrc.it

  • Delignon Y, Garello R, Hillion A (1997) Statistical modelling of ocean SAR images. IEE Proc Radar Sonar Navig 144 (6): 348-354

    Article  Google Scholar 

  • Greidanus H, Clayton P, Indregard M, Staples G, Suzuki N, Vachon P, Wackerman B, Tennvassas T, Mallorquí J, Kourti N, Ringrose R, Melief H (2004) Benchmarking operational SAR ship detection. Proc IEEE Int Geosc Rem Sens Symp IGARSS‘04, Anchorage, Alaska

    Google Scholar 

  • Greidanus H (2006) Sub-aperture behaviour of SAR signatures of ships. In: Proc IEEE Int Geosc Rem Sens Symp IGARSS‘06, Denver, Colorado

    Google Scholar 

  • Greidanus H, Kourti N (2006a) Findings of the DECLIMS project - Detection and classification of marine traffic from space. In: SEASAR 2006: Advances in SAR oceanography from ENVISAT and ERS, ESA-ESRIN, Frascati

    Google Scholar 

  • Greidanus H, Kourti N (2006b) A detailed comparison between radar and optical vessel signatures. In: Proc IEEE Int Geosc Rem Sens Symp IGARSS‘06, Denver, Colorado

    Google Scholar 

  • Hajduch G, Leilde P, Kerbaol V (2006) Ship detection on ENVISAT ASAR data: results, limitations and perspectives. In: SEASAR 2006: Advances in SAR oceanography from ENVISAT and ERS, ESA-ESRIN, Frascati, Italy

    Google Scholar 

  • Howell C, Youden J, Lane K, Flett D (2004) Iceberg and ship discrimination with ENVISAT multi-polarization ASAR. In: Proc IEEE Int Geosc Rem Sens Symp IGARSS‘04, Anchorage, Alaska

    Google Scholar 

  • Kourti N, Shepherd I, Schwartz G, Pavlakis P (2001), Integrating spaceborne SAR imagery into operational systems for fisheries monitoring. Can J Rem Sens 27 (4): 291-305

    Google Scholar 

  • Kourti N, Shepherd I, Greidanus H, Alvarez M, Aresu E, Bauna T, Chesworth J, Lemoine G, Schwartz G (2005) Integrating remote sensing in fisheries control. Fisheries Management and Ecology 12: 295-307

    Article  Google Scholar 

  • Lemoine G, Indregard M, Cesena C, Thoorens F, Greidanus H, Dörner H (2006) Evaluation of Vessel Detection System use for monitoring of fisheries activities. In: ICES Ann Sci Conf, Maastricht

    Google Scholar 

  • Lombardo P, Sciotti M (2001) Segmentation-based technique for ship detection in SAR images. IEE Proc Radar Sonar Navig 148 (3): 147-159

    Article  Google Scholar 

  • Losekoot M, Schwab P (2005) Operational use of ship detection to combat illegal fishing in the southern Indian Ocean. In: 8th Int’l Conf Rem Sens Marine and Coastal Envir, Halifax, Canada

    Google Scholar 

  • Lyden JD, Hammond RR, Lyzenga DR, Schuman RA (1988) Synthetic Aperture Radar imaging of surface ship wakes. J Geoph Res 93: 12,293-12,303

    Google Scholar 

  • Margarit G, Fabregas X, Mallorqui JJ, Broquetas A (2004) Analysis of the limitations of coherent polarimetric decompositions on vessel classification using simulated images. Proc IEEE Int Geosc Rem Sens Symp IGARSS‘04, Anchorage, Alaska

    Google Scholar 

  • Ouchi K, Tamaki S, Yaguchi H, Iehara M (2004) Ship detection based on coherence images derived from cross correlation of multilook SAR images. IEEE Geosc Rem Sens Lett 1 (3): 184-187

    Article  Google Scholar 

  • Tello M, López-Martínez C, Mallorqui JJ (2005) A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosc Rem Sens Lett 2 (2): 201-205

    Article  Google Scholar 

  • Touzi R, Charbonneau FJ, Hawkins RK, Vachon PW (2004) Ship detection and characterization using polarimetric SAR. Can J Rem Sen 30 (3): 552-559.

    Google Scholar 

  • Vachon PW, Thomas SJ, Cranton J, Edel HR, Henschel MD (2002) Validation of ship detection by the RADARSAT Synthetic Aperture Radar and the Ocean Monitoring Workstation. Can J Rem Sens 26: 200-212

    Google Scholar 

  • Wackerman CC, Friedman KS, Pichel WG, Clemente-Colόn P, Li X (2001) Automatic detection of ships in RADARSAT-1 SAR imagery, Can J Rem Sens 27 (4): 371-378

    Google Scholar 

  • Yeremy M, Campbell JWM, Mattar K, Potter T (2001) Ocean surveillance with polarimetric SAR. Can J Rem Sens 27 (4): 328-34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Greidanus, H. (2008). Satellite Imaging for Maritime Surveillance of the European Seas. In: Barale, V., Gade, M. (eds) Remote Sensing of the European Seas. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6772-3_26

Download citation

Publish with us

Policies and ethics