Skip to main content

The Composition and Architecture of the Cell

  • Chapter
Integrated Molecular and Cellular Biophysics
  • 1423 Accesses

In chapter 1, we have seen how phospholipids can cooperatively assemble to form membrane structures, which resemble the membranes of biological cells. Now, let us take a look at the composition and organization of the cell, which will allow us to put the physics in its biological context. Some of the terms and concepts introduced in this chapter (e.g., proteins, cell membrane, etc.) will be dealt with in more details later on in this book, while others (such as those concerning the structure and function of cellular organelles, biochemistry of the cell, etc.) are explained in many excellent books that are available on molecular and cellular biology (e.g., Alberts et al., 2002; Lodish et al., 2004; Berg et al., 2002). The reader should therefore be aware that by no means do we intend in this section to provide a comprehensive review of subjects normally covered by cell biology and biochemistry textbooks. Instead, herein the biological information is reduced to its bare essentials, and it will be introduced and used only insofar as it can help the progression towards understanding of the biophysics concepts and principles presented in this book.

Broadly speaking, there are two classes of living systems: viruses and uni- or multi-cellular organisms. Of these, only cellular organisms present the two main distinguishing features of a living system, self-reproduction and metabolism, viruses not being endowed with their own metabolism. Both deoxyribonucleic-based (DNA) viruses and ribonucleic-based (RNA) viruses rely on the cellular metabolism of the host cell, in order to self-multiply.

Section 2.1 is concerned with a brief description of the organization of biological cells, which is considered to be the fundamental morphological and functional unit of living matter. Section 2.2 will provide a description of protein structure, folding and misfolding, while section 2.3 will discuss the DNA structure and replication (multiplication).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K and Walter, P. (2002) Molecular Biology of the Cell, 4th ed., Garland Science/Taylor & Francis, New York

    Google Scholar 

  • Anfinsen, C. B. (1973) Principles that govern the folding of protein chains, Science, 181: 223

    Article  ADS  Google Scholar 

  • Baker, D. (2000) A surprising simplicity to protein folding, Nature, 405: 39

    Article  ADS  Google Scholar 

  • Berg, J. M., Tymoczo, J. L. and Stryer, L. (2002) Biochemistry, 5th ed., W. H. Freeman, New York

    Google Scholar 

  • Clementi, C. and Plotkin, S. S. (2006) The effects of nonnative interactions on protein folding rates: Theory and simulation, Prot. Sci., 13: 1750

    Article  Google Scholar 

  • Dobson, C. M. (2002) Getting out of shape, Nature, 418: 730

    Article  ADS  Google Scholar 

  • Drenth, J. (1994) Principles of X-Ray Crystallography, Springer, New York

    Google Scholar 

  • Eisenberg, D. (2003) The discovery of the α-helix and β-sheet, the principal structural features of proteins, Proc. Natl. Acad. Sci. USA, 100: 11207

    Article  ADS  Google Scholar 

  • Fenn, J. B. (2002) Electrospray ionization mass spectrometry: How it all began, J. Biomol. Tech., 13: 101

    Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome, Nature, 431: 931

    Google Scholar 

  • Kline, A. D., Braun, W. and Wütrich, K. (1988) Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry, J. Mol. Biol., 204: 675

    Article  Google Scholar 

  • Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. K., Krieger, M., Scott, M. P., Zipursky, S. L. and Darnell, J. (2004) Molecular Cell Biology, 5th ed., W. H. Freeman, New York

    Google Scholar 

  • Malacinschi, G. M. (2003) Essentials of Molecular Biology, 4th ed., Jones and Bartlett, Boston, MA/London

    Google Scholar 

  • Maddox, B. (2003) Rosalind Franklin: The Dark Lady of DNA, Harper Collins, New York

    Google Scholar 

  • Martini, F. H. (2004) Fundamentals of Anatomy & Physiology, 7th ed., Benjamin Cummings, San Francisco

    Google Scholar 

  • Mirny, L. and Shaknovich, E. (2001) Protein folding theory: from lattice to all-atom models, Annu. Rev. Biophys. Biomol. Struct., 30: 361

    Article  Google Scholar 

  • Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q. and Bourne, P. E. (2005) The Molecular Biology Toolkit (mbt): A modular platform for developing molecular visualization applications, BMC Bioinformatics, 6: 21

    Article  Google Scholar 

  • Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. and Hajdu, J. (2000) Nature 406: 752

    Article  ADS  Google Scholar 

  • Normille, D. (2006) Japanese latecomer joins race to build a hard X-ray laser, Science 314: 751

    Article  Google Scholar 

  • Onuchic, J. N. and Wolynes, P. G. (2004) Theory of protein folding, Curr. Opin. Struct. Biol., 14: 70

    Article  Google Scholar 

  • Pande, V. S. (2003) Meeting halfway on the bridge between protein folding theory and experiment, Proc. Natl. Acad. Sci. USA, 100: 3555

    Article  ADS  Google Scholar 

  • Rose, G. D., Fleming, P. J. Banavar, J. R. and Maritan, A. (2006) A backbone-based theory of protein folding, Proc. Natl. Acad. Sci. USA, 103: 16623

    Article  ADS  Google Scholar 

  • Saven, J. G., Wang, J. and Wolynes, P. G. (1994) Kinetics of protein folding: The dynamics of globally connected rough energy landscapes with biases, J. Chem. Phys., 101: 11037

    Article  ADS  Google Scholar 

  • Shneerson, V. L., Ourmazd, A. and Saldin, D. K. (2007) to be published in Acta. Cryst. (personal communication by D. K. Saldin)

    Google Scholar 

  • Schmidt, M., Pahl, R., Srajer, V., Anderson, S., Ren, Z., Ihee, H., Rajagopal, S. and Moffat, K. (2004) Protein kinetics: structures of intermediates and reaction mechanism from time-resolved x-ray data, Proc. Natl. Acad. Sci. USA, 101: 4799

    Article  ADS  Google Scholar 

  • Schrödinger, E. (1992) What Is Life?: The Physical Aspect of the Living Cell With Mind and Matter and Autobiographical Sketches, Cambridge University Press, Cambridge

    Google Scholar 

  • Serdyuk, I. N., Zaccai, N. R. and Zaccai, J. (2007) Methods in Molecular Biophysics. Structure, Dynamics, Function, Cambridge University Press, Cambridge/New York/Melbourne

    Google Scholar 

  • Spence, J. C. H., Schmidt, K., Wu, J. S., Hembree, G., Weierstall, U., Doak, B. and Fromme, P. (2005) Diffraction and imaging from a beam of laser-aligned proteins: resolution limits, Acta Cryst. A, 61: 237

    Article  Google Scholar 

  • Svedberg, T., Pedersen, K. O. (1940) The Ultracentrifuge, Clarendon, Oxford

    Google Scholar 

  • Walter, F., Boron, E. L. and Boulpaep, M. D. (2004) Medical Physiology: A Cellular and Molecular Approach, Saunders/Elsevier, Philadelphia

    Google Scholar 

  • Watson, J. D. and Crick, F. H. C. (1953) Molecular structure of nucleic acids. A structure for the deoxyribose nucleic acid. Nature, 171: 737

    Article  ADS  Google Scholar 

  • Williamson, M. P., Havel, T. F. and Wütrich, K. (1985) Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry, J. Mol. Biol., 182: 295

    Article  Google Scholar 

  • Wütrich, K. (2001) The way to NMR structures of proteins, Nature, 8: 923

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). The Composition and Architecture of the Cell. In: Integrated Molecular and Cellular Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8268-9_2

Download citation

Publish with us

Policies and ethics