Skip to main content

Selected Contemporary Topics in Sol-Gel Electro-Chemistry

  • Conference paper
Sol-Gel Methods for Materials Processing

Abstract

This review provides an overview of some exciting, new as well as somewhat older, directions in sol-gel electrochemical applications of silicates and composite silicate electrodes. Rather than provide an exhaustive account of all the many papers that have been published on sol-gel electrochemistry and composite sol-gel electrodes, we prefer to illustrate the versatility of sol-gel chemistry by a few select examples which on the one hand illustrate the power entailed in sol-gel technology for electrochemical applications, and on the other hand point to hot electrochemical fields in which more research is due and exciting developments are to be expected. We start this review with a brief historical perspective. The inorganic sol-gel and silicone electrochemistry fields are both rather old though never extensively dealt with particularly when it comes to sensing applications. In contrast, the sol-gel electrochemistry of inorganic-organic hybrids is a relatively young field whose importance was recognized only in the last 30 years, and despite, or maybe even owing to the late recognition it is being very extensively studied nowadays. The use of composite electrodes for sensing and other applications is emphasized in this review, and the fast evolving electrodriven deposition techniques are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. Collinson, and A. R. Howells, Sol-gels and electrochemistry: research at the inter- section, Anal. Chem. 72, 702A-709A (2000).

    Google Scholar 

  2. M. M. Collinson, Recent trends in analytical applications of organically modified silicate materials, TrAC, Trends Anal. Chem. 21(1), 31-39 (2002).

    Google Scholar 

  3. O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, and S. Sampath, Sol-gel materials in electrochemistry, Chem. Mater. 9(11), 2354-2375 (1997).

    Google Scholar 

  4. A. Walcarius, Electrochemical applications of silica-based organic-inorganic hybrid mate-rials, Chem. Mater. 13(10), 3351-3372 (2001).

    Google Scholar 

  5. A. Walcarius, Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials, Electroanalysis 13(8-9), 701-718 (2001).

    Google Scholar 

  6. J. Wang, and P. V. A. Pamidi, Sol-gel-derived gold composite electrodes, Anal. Chem. 69(21), 4490-4494 (1997).

    Google Scholar 

  7. M. M. Collinson, Electrochemistry: an important tool to study and create new sol-gel-derived materials, Acc. Chem. Res. 40, 777-783 (2007).

    Google Scholar 

  8. J. J. Ebelmen, Sur les éthers siliciques, C. R. Acad. Sci. 19, 398-400 (1844).

    Google Scholar 

  9. H. Y. -P. Hong, Crystal structures and crystal chemistry in the system Na1+xZr2SixP3íxO12, Mater. Res. Bull. 11(2), 173-182 (1976).

    Google Scholar 

  10. D. H. H. Quon, T. A. Wheat, and W. Nesbitt, Synthesis, characterization and fabrication of Na1+xZr2SixP3íxO12, Mater. Res. Bull. 15(11), 1533-1539 (1980).

    Google Scholar 

  11. E. P. Plueddemann, Silane Coupling Agents (Plenum Press, New York, 2nd ed., 1991).

    Google Scholar 

  12. J. R. Lenhard, and R. W. Murray, Chemically modified electrodes. 13. Monolayer/multilayer coverage, decay kinetics, and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes, J. Am. Chem. Soc. 100(25), 7870-7875 (1978).

    Google Scholar 

  13. J. R. Lenhard, and R. W. Murray, Chemically modified electrodes: part VII. Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent, J. Electroanal. Chem. 78(1), 195-201 (1977).

    Google Scholar 

  14. K. -N. Kuo, P. R. Moses, J. R. Lenhard, D. C. Green, and R. W. Murray, Immobilization, electrochemistry, and surface interactions of tetrathiafulvalene on chemically modified ruthenium and platinum oxide electrodes, Anal. Chem. 51(6), 745-748 (1979).

    Google Scholar 

  15. R. W. Murray, Chemically modified electrodes, Acc. Chem. Res. 13(5), 135-141 (1980).

    Google Scholar 

  16. M. S. Wrighton, R. G. Austin, A. B. Bocarsly, J. M. Bolts, O. Haas, K. D. Legg, L. Nadjo, and M. C. Palazzotto, A chemically derivatized platinum electrode: persistent attachment of an electroactive ferrocene derivative, J. Electroanal. Chem. 87(3), 429-433 (1978).

    Google Scholar 

  17. D. C. Bookbinder, and M. S. Wrighton, Thermodynamically uphill reduction of a surface-confined N,N’-dialkyl-4,4’-bipyridinium derivative on illuminated p-type silicon surfaces, J. Am. Chem. Soc. 102(15), 5123-5125 (1980).

    Google Scholar 

  18. G. Philipp, and H. Schmidt, New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process, J. Non-Cryst. Solids 63(1-2), 283-292 (1984).

    Google Scholar 

  19. D. Avnir, D. Levy, and R. Reisfeld, The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G, J. Phys. Chem. 88(24), 5956-5959 (1984).

    Google Scholar 

  20. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Biochemically active sol-gel glasses: the trapping of enzymes, Mater. Lett. 10(1-2), 1-5 (1990).

    Google Scholar 

  21. S. Braun, S. Rappoport, R. Zusman, S. Shteltzer, S. Drukman, D. Avnir, and M. Ottolenghi, in: Biotechnology: Bridging Research and Applications, edited by D. Kamely, A. Chakrabarty, and S. E. Kornguth (Kluwer, Amsterdam, 1991).

    Google Scholar 

  22. Y. S. Lipatov, Polymer blends and interpenetrating polymer networks at the interface with solids, Prog. Polym. Sci. 27(9), 1721-1801 (2002).

    Google Scholar 

  23. M. M. Collinson, C. G. Rausch, and A. Voigt, Electroactivity of redox probes encapsulated within sol-gel-derived silicate films, Langmuir 13(26), 7245-7251 (1997).

    Google Scholar 

  24. M. Tsionsky, A. Vanger, and O. Lev, Macroporous thin films for planar chromatography, J. Sol-Gel Sci. Technol. 2(1-3), 595-599 (1994).

    Google Scholar 

  25. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography, Anal. Chem. 68(19), 3498-3501 (1996).

    Google Scholar 

  26. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359(6397), 710-712 (1992).

    Google Scholar 

  27. M. Etienne, A. Quach, D. Grosso, L. Nicole, C. Sanchez, and A. Walcarius, Molecular trans-port into mesostructured silica thin films: electrochemical monitoring and comparison bet-ween p6m, P63/mmc, and Pm3n structures, Chem. Mater. 19(4), 844-856 (2007).

    Google Scholar 

  28. L. Rabinovich, and O. Lev, Sol-gel derived composite ceramic carbon electrodes, Electro-analysis 13(4), 265-275 (2001).

    Google Scholar 

  29. R. A. Zoppi, and S. P. Nunes, Electrochemical impedance studies of hybrids of perfluoro-sulfonic acid ionomer and silicon oxide by sol-gel reaction from solution, J. Electroanal. Chem. 445(1-2), 39-45 (1998).

    Google Scholar 

  30. B. Barroso-Fernandez, M. T. Lee-Alvarez, C. J. Seliskar, and W. R. Heineman, Electro-chemical behavior of methyl viologen at graphite electrodes modified with Nafion sol-gel composite, Anal. Chim. Acta 370(2-3), 221-230 (1998).

    Google Scholar 

  31. C. -Z. Zhao, N. Egashira, Y. Kurauchi, and K. Ohga, Electrochemiluminescence sensor having a Pt electrode coated with a Ru(bpy)32+-modified chitosan/silica gel membrane, Anal. Sci. 14(2), 439-441 (1998).

    Google Scholar 

  32. G. Gun, M. Tsionsky, and O. Lev, Preparation and characterization of carbon ceramic electrodes, in: Better Ceramics Through Chemistry VI, edited by C. Sanchez, M. L. Mecartney, C. J. Brinker, and A. K. Cheetham (Materials Research Society, Pittsburgh, PA, 1994), pp. 1011-1017.

    Google Scholar 

  33. C. J. Brinker, and G. W. Scherer, Sol-Gel Science (Academic, San-Diego, CA, 1989).

    Google Scholar 

  34. C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D. -W. Hua, and T. J. Headley “Ultramicroporous” silica-based supported inorganic membranes, J. Membr. Sci. 77(2-3), 165-179 (1993).

    Google Scholar 

  35. D. Avnir, T. Coradin, O. Lev, and J. Livage, Recent bio-applications of sol-gel materials, J. Mater. Chem. 16(11), 1013-1030 (2006).

    Google Scholar 

  36. D. Avnir, Organic chemistry within ceramic matrices: doped sol-gel materials, Acc. Chem. Res. 28(8), 328-334 (1995).

    Google Scholar 

  37. O. Lev, Diagnostic applications of organically doped sol-gel porous glass, Analusis 20(9), 543-553 (1992).

    Google Scholar 

  38. Y. Wei, J. -M. Yeh, D. Jin, X. Jia, J. Wang, G.-W. Jang, C. Chen, and R. W. Gumbs, Composites of electronically conductive polyaniline with polycrylate-silica hybrid sol-gel materials. Chem. Mater. 7(5), 969-974 (1995).

    Google Scholar 

  39. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279(5350), 548-552 (1998).

    Google Scholar 

  40. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating, Nature 389(6649), 364-368 (1997).

    Google Scholar 

  41. W. Yantasee, Y. Lin, X. Li, G. E. Fryxell, T. S. Zemanian, and V. V. Viswanathan, Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized with thiol-terminated monolayer, Analyst 128(7), 899-904 (2003).

    Google Scholar 

  42. S. Sayen, M. Etienne, J. Bessiere, and A. Walcarius, Tuning the sensitivity of electrodes modified with an organic-inorganic hybrid by tailoring the structures of the nanocomposite material, Electroanalysis 14(21), 1521-1525 (2002).

    Google Scholar 

  43. N. K. Raman, M. T. Anderson, and C. J. Brinker, Template-based approaches to the pre-paration of amorphous, nanoporous silicas, Chem. Mater. 8(8), 1682-1701 (1996).

    Google Scholar 

  44. S. Chia, J. Urano, F. Tamanoi, B. Dunn, and J. I. Zink, Patterned hexagonal arrays of living cells in sol-gel silica film, J. Am. Chem. Soc. 122(27), 6488-6489 (2000).

    Google Scholar 

  45. K. Nakanishi, H. Komura, R. Takahashi, and N. Soga, Phase separation in silica sol-gel system containing poly(ethylene oxide). I. Phase relation and gel morphology, Bull. Chem. Soc. Jpn. 67(5), 1327-1335 (1994).

    Google Scholar 

  46. K. Haupt, and K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100(7), 2495-2504 (2000).

    Google Scholar 

  47. S. Srebnik, and O. Lev, Theoretical investigation of imprinted crosslinked silicates, J. Sol- Gel Sci. Technol. 26(1-3), 107-113 (2003).

    Google Scholar 

  48. F. H. Dickey, The preparation of specific adsorbents, Proc. Nat. Acad. Sci. U.S.A. 35, 227-229 (1949).

    Google Scholar 

  49. S. Marx, and Z. Liron, Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers, Chem. Mater. 13(10), 3624-3630 (2001).

    Google Scholar 

  50. S. Marx, and D. Avnir, The induction of chirality in sol-gel materials, Acc. Chem. Res. 40(9), 768-776 (2007).

    Google Scholar 

  51. G. Shustak, S. Mark, I. Turyan, and D. Mandler, Application of sol-gel technology for electroanalytical sensing, Electroanalysis 15(5-6), 398-408 (2003).

    Google Scholar 

  52. M. Hunnius, A. Rufinska, and W. F. Maier, Selective surface adsorption versus imprinting in amorphous microporous silicas, Microp. Mesop. Mater. 29(3), 389-403 (1999).

    Google Scholar 

  53. B. Boury, R. J. P. Corriu, V. Le Strat, and P. Delord, Generation of porosity in a hybrid organic-inorganic xerogel by chemical treatment, New J. Chem. 23(5), 531-538 (1999).

    Google Scholar 

  54. R. Makote, and M. M. Collinson, Template recognition in inorganic-organic hybrid films prepared by the sol-gel process, Chem. Mater. 10(9), 2440-2445 (1998).

    Google Scholar 

  55. S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Properties of trypsin and of acid-phosphatase immobilized in sol-gel glass matrices, Biotechnol. Appl. Biochem. 15(3), 227-235 (1992).

    Google Scholar 

  56. J. Heller, and A. Heller, Loss of activity or gain in stability of oxidases upon their immobili-zation in hydrated silica: significance of the electrostatic interactions of surface arginine resi-dues at the entrances of the reaction channels, J. Am. Chem. Soc. 120(19), 4586-4590 (1998).

    Google Scholar 

  57. M. T. Reetz, A. Zonta, and J. Simpelkamp, Efficient heterogeneous biocatalysts by entrap-ment of lipases in hydrophobic sol-gel materials, Angew. Chem. Int. Ed. 34(3), 301-303 (1995).

    Google Scholar 

  58. D. T. Nguyen, M. Smit, B. Dunn, and J. I. Zink, Stabilization of creatine kinase encapsulated in silica sol-gel materials and unusual temperature effects on its activity, Chem. Mater. 14(10), 4300-4306 (2002).

    Google Scholar 

  59. I. Gill, and A. Ballesteros, Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach, J. Am. Chem. Soc. 120(34), 8587-8598 (1998).

    Google Scholar 

  60. Q. Chen, G. L. Kenausis, and A. Heller, Stability of oxidases immobilized in silica gels, J. Am. Chem. Soc. 120(19), 4582-4585 (1998).

    Google Scholar 

  61. M. A. Kim, and W. -Y. Lee, Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film, Anal. Chim. Acta 479(2), 143-150 (2003).

    Google Scholar 

  62. I. Pankratov, and O. Lev, Sol-gel derived renewable-surface biosensors, J. Electroanal. Chem. 393(1-2), 35-41 (1995).

    Google Scholar 

  63. S. Sampath, and O. Lev, Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer, Anal. Chem. 68(13), 2015-2021 (1996).

    Google Scholar 

  64. S. Sampath, and O. Lev, Renewable, reagentless glucose sensor based on a redox modified enzyme and carbon-silica composite, Electroanalysis 8(12), 1112-1116 (1996).

    Google Scholar 

  65. J. Wang, P. V. A. Pamidi, and D. S. Park, Sol-gel-derived metal-dispersed carbon composite amperometric biosensors, Electroanalysis 9(1), 52-55 (1997).

    Google Scholar 

  66. S. Bharathi, and O. Lev, Sol-gel-derived nanocrystalline gold-silicate composite biosensor, Anal. Commun. 35(1), 29-31 (1998).

    Google Scholar 

  67. S. Bharathi, J. Joseph, and O. Lev, Electrodeposition of thin gold films from an amino-silicate stabilized gold sol, Electrochem. Solid-State Lett. 2(6), 284-287 (1999).

    Google Scholar 

  68. S. Bharathi, M. Nogami, and O. Lev, Electrochemical organization of gold nanoclusters in three dimensions as thin films from an aminosilicate-stabilized gold sol and their charac-terization, Langmuir 17(9), 2602-2609 (2001).

    Google Scholar 

  69. S. Bharathi, and O. Lev, Sol-gel-derived prussian blue-silicate amperometric glucose bio-sensor, Appl. Biochem. Biotechnol. 89(2-3), 209-216 (2000).

    Google Scholar 

  70. B. Haghighi, N. Shams, and L. Gorton, Effect of various deposition techniques, electrode materials and posttreatment with tetrabutylammonium and tetrabutylphosphonium salts on the electrochemical behavior and stability of various Prussian blue modified electrodes, Electroanalysis 19(18), 1921-1932 (2007).

    Google Scholar 

  71. H. Wakamatsu, S. P. Szu, L. C. Klein, and M. Greenblatt, Effect of lithium-salts on the ionic conductivity of lithium silicate gels, J. Non-Cryst. Solids 147, 668-671 (1992).

    Google Scholar 

  72. I. Gautier-Luneau, A. Denoyelle, J. Y. Sanchez, and C. Poinsignon, Organic-iorganic protonic polymer electrolytes as membrane for low-temperature fuel cell, Electrochim. Acta 37(9), 1615-1618 (1992).

    Google Scholar 

  73. N. Miyake, J. S. Wainright, and R. F. Savinell, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conduc-tivity and water content, J. Electrochem. Soc. 148(8), A898-A904 (2001).

    Google Scholar 

  74. I. Honma, Y. Takeda, and J. M. Bae, Protonic conducting properties of sol-gel derived organic/ inorganic nanocomposite membranes doped with acidic functional molecules, Solid State Ionics 120(1-4), 255-264 (1999).

    Google Scholar 

  75. K. Ramanathan, B. R. Jönsson, and B. Danielsson, Sol-gel based thermal biosensor for glucose, Anal. Chim. Acta 427(1), 1-10 (2001).

    Google Scholar 

  76. M. E. Tess, and J. A. Cox, Chemical and biochemical sensors based on advances in materials chemistry, J. Pharm. Biomed. Anal. 19(1-2), 55-68 (1999).

    Google Scholar 

  77. M. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, and B. Olsowski, ORMOCERs as inorganic-organic electrolytes for new solid state lithium batteries and supercapacitors, Electrochim. Acta 43(10-11), 1155-1161 (1998).

    Google Scholar 

  78. M. Tsionsky, G. Gun, V. Glezer, and O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications, Anal. Chem. 66(10), 1747-1753 (1994).

    Google Scholar 

  79. S. Bharathi, N. Fishelson, and O. Lev, Direct synthesis and characterization of gold and other noble metal nanodispersions in sol-gel-derived organically modified silicates, Langmuir 15 (6), 1929-1937 (1999).

    Google Scholar 

  80. J. Widera, and J. A. Cox, Electrochemical oxidation of aniline in a silica sol-gel matrix, Electrochem. Commun. 4(2), 118-122 (2002).

    Google Scholar 

  81. M. M. Verghese, K. Ramanathan, S. M. Ashraf, M. N. Kamalasanan, and B. D. Malhotra, Electrochemical growth of polyaniline in porous sol-gel films, Chem. Mater. 8(4), 822-824 (1996).

    Google Scholar 

  82. T. -M. Park, E. I. Iwuoha, M. R. Smyth, R. Freaney, and A. J. McShane, Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of L-lactate, Talanta 44(6), 973-978 (1997).

    Google Scholar 

  83. W. Song, Y. Liu, N. Lu, H. Xu, and C. Sun, Application of the sol-gel technique to polyoxometalates: towards a new chemically modified electrode, Electrochim. Acta 45(10), 1639-1644 (2000).

    Google Scholar 

  84. A. Kros, M. Gerritsen, V. S. I. Sprakel, N. A. J. M. Sommerdijk, J. A. Jansen, and R. J. M. Nolte, Silica-based hybrid materials as biocompatible coatings for glucose sensors, Sens. Actuators, B 81(1), 68-75 (2001).

    Google Scholar 

  85. Z. Gao, J. S. Nahrup, J. E. Mark, A. Sakr, Poly(dimethylsiloxane) coatings for controlled drug release. I. Preparation and characterization of pharmaceutically acceptable materials, J. Appl. Polym. Sci. 90(3), 658-666 (2003).

    Google Scholar 

  86. A. Sadeh, S. Sladkevich, F. Gelman, P. Prikodchenko, I. Baumberg, O. Berezin, and O. Lev, Sol-gel-derived composite antimony-doped, tin oxide-coated clay-silicate semitransparent and conductive electrodes, Anal. Chem. 79(14), 5188-5195 (2007).

    Google Scholar 

  87. J. Wang, D. S. Park, and P. V. A. Pamidi, Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors, J. Electroanal. Chem. 434(1-2), 185-189 (1997).

    Google Scholar 

  88. J. Li, L. S. Chia, N. K. Goh, and S. N. Tan, Renewable silica sol-gel derived carbon composite based glucose biosensor, J. Electroanal. Chem. 460(1-2), 234-241 (1999).

    Google Scholar 

  89. J. Gun, and O. Lev, Wiring of glucose oxidase to carbon matrices via sol-gel derived redox modified silicate, Anal. Lett. 29(11), 1933-1938 (1996).

    Google Scholar 

  90. V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, Carbon nanotube sol-gel composite materials, Nano Lett. 1(12), 719-721 (2001).

    Google Scholar 

  91. J. K. Campell, L. Sun, and R. M. Crooks, Electrochemistry using single carbon nanotubes, J. Am. Chem. Soc. 121(15), 3779-3780 (1999).

    Google Scholar 

  92. H. N. Choi, Y. -K. Lyu, J. H. Han, and W. -Y. Lee, Amperometric ethanol biosensor based on carbon nanotubes dispersed in sol-gel-derived titania-Nafion composite film, Electro-analysis 19(14), 1524-1530 (2007).

    Google Scholar 

  93. S. Bharathi, and M. Nogami, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme, Analyst 126(11), 1919-1922 (2001).

    Google Scholar 

  94. S. Bharathi, J. Joseph, and O. Lev, Electrodeposition of thin gold films from an amino-silicate stabilized gold sol, Electrochem. Solid-State Lett. 2(6), 284-287 (1999).

    Google Scholar 

  95. S. Bharathi, M. Nogami, and O. Lev, Electrochemical organization of gold nanoclusters in three dimensions as thin films from an aminosilicate-stabilized gold sol and their charac-terization, Langmuir 17(9), 2602-2609 (2001).

    Google Scholar 

  96. D. Mandler, Private communication, 2007.

    Google Scholar 

  97. N. Al-Dahoudi, and M. A. Aegerter, Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension, Thin Solid Films 502(1-2), 193-197 (2006).

    Google Scholar 

  98. S. Sampath, and O. Lev, 3D organized self-assembled monolayer electrodes: a novel bio-sensor configuration, Adv. Mater. 9(5), 410-413 (1997).

    Google Scholar 

  99. J. Gun, and O. Lev, Sol-gel derived, ferrocenyl-modified silicate-graphite composite elec-trode: wiring of glucose oxidase, Anal. Chim. Acta 336(1-3), 95-106 (1996).

    Google Scholar 

  100. L. Coche-Guérente, S. Cosnier, and P. Labbé, Sol-gel derived composite materials for the construction of oxidase/peroxidase mediatorless biosensors, Chem. Mater. 9(6), 1348-1352 (1997).

    Google Scholar 

  101. A. Sussman, and T. J. Ward, Ceramic coatings on metal substrates by electrophoretic deposition, J. Electrochem. Soc. 129, C324-C324 (1982).

    Google Scholar 

  102. N. Leventis, and M. Chen, Electrochemically assisted sol-gel process for the synthesis of polysiloxane films incorporating phenothiazine dyes analogous to methylene blue. Structure and ion-transport properties of the films via spectroscopic and electrochemical characteri-zation, Chem. Mater. 9(11), 2621-2631 (1997).

    Google Scholar 

  103. R. Shacham, D. Avnir, and D. Mandler, Electrodeposition of methylated sol-gel films on conducting surfaces, Adv. Mater. 11(5), 384-388 (1999).

    Google Scholar 

  104. A. Walcarius, E. Sibottier, M. Etienne, and J. Ghanbaja, Electrochemically assisted self-assembly of mesoporous silica thin films, Nat. Mater. 6(8), 602-608 (2007).

    Google Scholar 

  105. W. -Z. Jia, K. Wang, Z. -J. Zhu, H. -T. Song, X. -H. Xia, One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process, Langmuir 23(23), 11896-11900, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovadia Lev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Sladkevich, S. et al. (2008). Selected Contemporary Topics in Sol-Gel Electro-Chemistry. In: Innocenzi, P., Zub, Y.L., Kessler, V.G. (eds) Sol-Gel Methods for Materials Processing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8514-7_10

Download citation

Publish with us

Policies and ethics