Skip to main content

Effect of Ice and Snow on the Dynamics of~Transmission Line Conductors

  • Chapter
Atmospheric Icing of Power Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg A, Smart TJ, Halsan K, Papailiou KO, Schmidt J, Smart J, Hearnshaw D (August 1992) Results of questionnaire on interphase spacers. CIGRÉ SC22 WG11, Electra vol 143

    Google Scholar 

  • Brika D, Laneville A (1993) Vortex-induced vibrations of a long flexible circular cylinder. Journal of fluid mechanics, vol 250: 481–508

    Article  Google Scholar 

  • Brokenshire RE (1979) Experimental study of the loads imposed on welded steel support structures by galloping 345 kV bundled conductors. IEEE Paper A79-551-3, IEEE PES Summer Meeting, Vancouver

    Google Scholar 

  • Brooks NPH (1960) Experimental Investigation of the Aeroelastic Instability of Bluff Two-Dimensional Cylinders. M.A.Sc. Thesis, University of British Columbia, July

    Google Scholar 

  • Chadha J (1974) Adynamic model investigation of conductor galloping. IEEEPaper no C74 059-2

    Google Scholar 

  • Chadha J, Jaster W (1975) Influence of turbulence on the galloping instability of iced conductors. IEEE Trans. Power Apparatus & Systems vol PAS-94, no 5, September/October 1975: 1489–1499

    Article  Google Scholar 

  • Chan JK, Shah AH, Popplewell N (1992). Modelling of Conductor Galloping. Report CEA R&D. Project 321 T 672

    Google Scholar 

  • Davis DA, Richards DJW, Scriven RA (1963) Investigation of conductor oscillation on the 275 kV crossing over the rivers Severn and Wye. Proceedings IEE, vol 110, no 1: 205–218

    Google Scholar 

  • Den Hartog JP (1932) Transmission line vibration due to sleet. AIEE Transactions, vol 51: 1074–1076

    Google Scholar 

  • De Tourreil C, Kuffel E (1998) Comportement des isolateurs composites rigides à socle soumis à des charges mÉcaniques dynamiques. Canadian Electrical Association, Report no 004D877, December

    Google Scholar 

  • Edwards AT, Madeyski A (August 1956) A Progress Report on the Investigation of Galloping Transmission Line Conductors. AIEE Trans, vol 75, part 3: 666–686

    Google Scholar 

  • Fekr MR, McClure G(1996) Numerical modeling of the dynamic response of ice shedding on electrical transmission lines. In: Proc 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi: 49–54

    Google Scholar 

  • Fekr MR, McClure G, Hartmann D (1998) Investigation of transmission line failure due to ice shedding effects using dynamic analysis. In: Proc 8th International Workshop on Atmospheric Icing of Structures: 11–16

    Google Scholar 

  • Gartshore IS (1973) The effects of free stream turbulence on the drag of rectangular two-dimensional prisms. Boundary Layer Wind Tunnel Laboratory 4–73, University of Western Ontario

    Google Scholar 

  • Gibbon RR, Juul PH, White HB, Wijker WJ (1984) Damage to overhead lines caused by conductor galloping. ELECTRA no 94: 71–76

    Google Scholar 

  • Halsan KA, Havard DG, Fikke SM, Gerezgiher A (1998) Galloping Studies at Statnett Using Remote Monitoring. CIGRE SC22, WG11 meeting.Graz, Austria, Paper no 22–98

    Google Scholar 

  • Hardy C, Van Dyke P (January 1995) Field Observations on Wind-Induced Conductor Motions. Journal of Fluids and Structures, vol 9, no 1: 43–60

    Google Scholar 

  • Havard DG (1996) Fifteen years field trials of galloping controls for overhead power lines. In: Proc 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi

    Google Scholar 

  • Havard DG (1998)Analysis of galloping conductor field data. 8th International Workshop on Atmospheric Icing of Structures, Reykjavik

    Google Scholar 

  • Havard DG (2003) Dynamic Loads On Transmission Line Structures During Galloping – Field Data and Elastic Analysis. 5th International Symposium on Cable Dynamics, Santa Margherita

    Google Scholar 

  • Havard DG, Nigol O (January 1978) Control of torsionally induced conductor galloping with detuning pendulums. IEEE Paper no A78: 125–127

    Google Scholar 

  • Havard DG, Pohlman JC (February 1984) Five years’ field trials of detuning pendulums for galloping control. IEEE, Los Angeles, Trans. PAS: 318–327

    Google Scholar 

  • Hillier R, Cherry RJ (1981) The effect of stream turbulence on separation bubbles. Journal of Wind Engineering and Industrial Aerodynamics, vol 8: 49–58

    Article  Google Scholar 

  • Hoerner SF (1965) Fluid dynamic drag. published by the author, New York, 415 p

    Google Scholar 

  • Irvine HM, Caughay TK (1974) The linear theory of free vibrations of a suspended cable. In: Proc Roy Soc London Series A, 341: 299–315

    Google Scholar 

  • Jamaladdine A, Beauchemin R, Rousselet J, McClure G (1996) Weight-dropping simulation of ice-shedding effects on an overhead transmission line model. In: Proc 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi: 44–48

    Google Scholar 

  • Keutgen R (1999) Galloping Phenomena. A Finite Element Approach. Ph.D.Thesis. Collection des publications de la FacultÉ des Sciences. AppliquÉes de l’UniversitÉ de Liège. no. 191: 1–202

    Google Scholar 

  • Kiessling F, Nefzger P, Nolasco JF, Kaintzyk U (2003) Overhead Power Lines – Planning, design, construction, Power Systems. Springer: 321–348

    Google Scholar 

  • Laneville A (May 1973) Effects of turbulence on wind induced vibrations of bluff cylinders. Ph.D. Thesis, University of British Columbia, 129 p

    Google Scholar 

  • Laneville A, Parkinson GV (1971) Effects of turbulence on galloping bluff cylinders. Presented at the 3rd International Conference on Winds Effects on Buildings and Structures, Tokyo

    Google Scholar 

  • Laneville A, Gartshore IS, Parkinson GV (1975) An explanation of some effects of turbulence on bluff bodies. In: Proc 4th Int’l Conference on Buildings and Structures, London, Cambridge Univ. Press: 333–342

    Google Scholar 

  • Lilien JL, Havard DG (April 2000) Galloping Data Base on Single and Bundle Conductors Prediction of Maximum Amplitudes. IEEE Trans on Power Delivery, vol 15, no 2: 670–674

    Google Scholar 

  • Lilien JL (convenor), Van Dyke P (secretary), Asselin JM, Farzaneh M, Halsan K, Havard DG, Hearnshaw D, Laneville A, Mito M, Rawlins CB, St-Louis M, Sunkle D, Vinogradov A (2007) State of the art of conductor galloping. CigrÉ TFB2.11.06, Électra, technical brochure no 322, 140 p

    Google Scholar 

  • Loudon D (1999)Vibration control of fjord crossings in Norway. In: Proc 3rd International Symposium on Cable Dynamics: 183–187

    Google Scholar 

  • Manukata M, Yoshida Y, Ishii H (1963) Determination of spacer intervals in quadruple conductor transmission lines. Sumitomo Electric Technical Review, no 1

    Google Scholar 

  • Matsubayashi Y (1963) Theoretical considerations of the twisting phenomenon of the bundle conductor type transmission line. Sumitomo Electric Technical Review, no 3

    Google Scholar 

  • Matsuura Y, Suzuki Y, Arakawa K, Tanaka K (1990) Technical aspects on long-term performance of suspension insulators and its laboratory evaluation methods. Canadian Electrical Association Symposium on Insulators, Power System Planning and Operating Section, Engineering and Operating Division, Montreal: 14–25

    Google Scholar 

  • Miner MA (1945) Cumulative damage in fatigue. Journal of Applied Mechanics, vol 12: A159–A164

    Google Scholar 

  • Morgan VT, Swift DA (1964) Jump height of overhead line conductors after the sudden release of ice loads. Proc IEE, vol 111, no 10: 1736–1746

    Google Scholar 

  • Morishita S, Tsujimoto K, Yasui M, Mori N, Inoue T, Shimojima K, Naito K (1984) Galloping phenomena of large bundle conductors – Experimental results of the field test lines. In: Proc Cigre, 1984 Session, Paris, Paper no 22–04

    Google Scholar 

  • Nakamura Y (1980) Galloping of Bundled Power Line Conductors. Journ Sound & Vibration, vol 73, no 3: 363–377

    MATH  Google Scholar 

  • Nakamura Y,Tomonari Y (1977) Galloping of rectangular prisms in a smooth and in a turbulent flow. Journal of Sound and Vibration, vol 52, issue 2: 233–241

    Google Scholar 

  • Nakamura Y, Tomonari Y (May 1981) The aerodynamic characteristics of D-section prisms in a smooth and in a turbulent flow. Aeronautical Quarterly. vol 32: 153–168

    Google Scholar 

  • Naudascher E, Rockwell D (1994) Flow-induced Vibrations – An Engineering Guide. A.A. Balkema Publishers, Rotterdam

    Google Scholar 

  • Nigol O, Clarke GJ (1974) Conductor galloping and control based on torsional mechanism. IEEE Paper no C74 016–2

    Google Scholar 

  • Nigol O, Clarke GJ, Havard DG (January 1977) Torsional stability of bundle conductors. IEEE Paper no F 77 224–9

    Google Scholar 

  • Nigol O, Havard DG (1978) Control of torsionally induced galloping with detuning pendulums. IEEE Paper no A78 125–7

    Google Scholar 

  • Novak M (1969) Aeorelastic galloping of prismatic bodies. ASCE Journal of the Engineering Mechanics Division, 96: 115–142

    Google Scholar 

  • Novak M (1971) Galloping and vortex induced oscillations of structures. In: Proc 3rd International Conference on wind effects on buildings and structures, Tokyo, Paper IV–16: 11

    Google Scholar 

  • Novak M, Tanaka H (1974) Effect of turbulence on galloping instability. ASCE Journal Engineering Mechanics Division, vol 100, no EM1: 27–47

    Google Scholar 

  • Novak M, Davenport A, Tanaka H (1978) Vibration of towers due to galloping of iced cables. ASCE Journal of the Engineering Mechanics Division, 104: 457–473

    Google Scholar 

  • Palmgren A (1924) Die lebensdauer von kugellagern, Zeitschrift des vereins deutscher ingenieure. vol 68: 339–341

    Google Scholar 

  • Parkinson GV (1971) Wind-induced instability of structures. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, vol 269, issue 1199: 395–409

    Article  Google Scholar 

  • Parkinson GV (1989). Phenomena and modelling of flow-induced vibrations of bluff bodies. Progress in Aerospace Sciences 26: 169–224

    Article  Google Scholar 

  • Parkinson GV, Smith JD (1964) The square prism as an aeroelastic non-linear oscillator. Quart Journ Mech and Applied Math, vol XVII, pt 2: 225–239

    Article  Google Scholar 

  • Pon CJ, Havard DG (October 1993) Control of distribution line galloping. Canadian Electrical Association, Montreal, R&D Project 196T367

    Google Scholar 

  • Pon CJ, Havard DG (March1994) Field trials of galloping control devices for bundle conductor lines. Canadian Electrical Association, Montreal, R&D Project 133T386

    Google Scholar 

  • Pon CJ, Havard DG, Edwards AT (July 1982) Performance of interphase spacers for galloping control. Ontario Hydro Research Division Report no 82-216-K

    Google Scholar 

  • Pon CJ, Havard DG, Currie IG, MacDonald R (1990) Aeolian vibration excitation of bundle conductors. Report on CEA R&D Project 177T510

    Google Scholar 

  • Price SJ (1975) Wake induced flutter of power transmission conductors. J Sound Vib 38(1): 125–147

    Article  Google Scholar 

  • Rawlins CB (1981) Analysis of conductor galloping field observations – single conductors. IEEE Transactions on Power Apparatus and Systems, vol PAS-100, no 8

    Google Scholar 

  • Rawlins CB (April 1988) Research on vibration of overhead ground wires. IEEE Transactions on Power Delivery, vol 3, no 2, pp 769–775

    Google Scholar 

  • Rawlins CB (2001) Galloping Eigenmodes in a Multispan Overhead Line Section. Proceedings of Fourth International Symposium on Cable Dynamics. Montreal (Canada). May 28–30. pp 85–92

    Google Scholar 

  • Rawlins CB, Hard AR, Ikegami R, Doocy ES (1979) Transmission Line Reference Book – Wind-Induced Conductor Motion. Palo Alto, California: Electric Power Research Institute

    Google Scholar 

  • REA (1962, Rev 1982)Galloping Conductors. Design Report no 1, Rural Electrification Administration, Transmission Branch

    Google Scholar 

  • Shimizu M, Shugo M, Sato J (1998) Geometric non-linear analysis of transmission line galloping. Journal of Structural Engineering, vol 44A: 951–960 (Japanese only)

    Google Scholar 

  • Simpson A (1966) Determination of the inplane natural frequencies of multispan transmission lines by a transfer-matrix method. In: Proc IEE, vol 113, no 5: 870–878

    Google Scholar 

  • Simpson A (1979) Fluid-dynamic stability aspects of cables, Mechanics of wave-induced forces cylinders. T.L. Shaw (ed.) Pitman, 90p

    Google Scholar 

  • Smith JD (1962) The square prism as an aeroelastic non-linear oscillator. M.A.Sc. Thesis, University of British Columbia

    Google Scholar 

  • Stewart JR (1983) Ice as an influence on compact line phase spacing. In: Proc. First International Workshop on Atmospheric Icing of Structures, Hanover: 77–82

    Google Scholar 

  • St-Louis M, Hardy C, Bellerive JP (1993) Bundled-conductor spacers: Hydro-Quebec’s experience. Paper Presented to the Canadian Electrical Association, Transmission Section Meeting, Montreal

    Google Scholar 

  • Strouhal V (1878) On Aeolian tones. Ann of Phys, 5: 216

    Google Scholar 

  • Tunstall M (1989) Accretion of ice and aerodynamic coefficients. Study day on galloping, University of Liège

    Google Scholar 

  • Tunstall M (Convenor), Obro M (Secretary), Couvreur M, Ervik M, Fukuda J, Havard DG, Hearnshaw D, Jürdens C, Kempner L, Lilien JL, Okumura T, Pohlman JC, Rawlins CB, Rhebergen B, Ruritz R, Schlyter C, Schmidt J, Shkaptsov VA, Smart T, St-Louis M, Sunkle D, Tavano F, Turna ÖF, Voyatzakis Y, Wolfs M (1995) Field observations of overhead line galloping – Galloping reportingforms. CIGRE SC22:WG11 Task Force on Galloping, Electra no 162

    Google Scholar 

  • Van Dyke P (2007) Galop induit en ligne expÉrimentale à l’aide de profils en D sur conducteur simple avec ou sans entretoises interphases. Ph.D. thesis, UniversitÉ de Sherbrooke

    Google Scholar 

  • Van Dyke P, Laneville A (July 2004) Galloping of a single conductor covered with a D-section on a high voltage overhead test line. 5th International Colloquium on Bluff Body Aerodynamics and Applications: 377–380

    Google Scholar 

  • Van Dyke P, Laneville A (2005) HAWS clamp performance on a high voltage overhead test line. 6th International Symposium on Cable Dynamics Proceedings, Charleston: 205–209

    Google Scholar 

  • Van Dyke P, Paquette R, St-Louis M (2001) Design and test of a new Aeolian vibration damper. 4th International Symposium on Cable Dynamics, MontrÉal

    Google Scholar 

  • Wardlawm RL, Cooper KR, Scanlan RH (1973) Observations on the problem of subspan oscillation of bundled power conductors. Intern symposium vibration problems in industry, Keswick, UK Atomic Energy Authority, Paper no 323

    Google Scholar 

  • Wolfs M (Convenor),Sunkle D (Secretary), Diana G, Ervik M, Fujii K, Halsan K, Havard D, Hearnshaw D, Jürdens C, Kleveborn R, Lilien JL, Mikkelsen SD, Mito M, Okumura T, Papailiou K, Pohlman JC, Rawlins C, Rhebergen B, St-Louis M, Schlyter C, Schmid, J, Shkaptsov V, Smart T, Tavano F, Tunstall M, Van Dyke P, Voyatzakis Y, Wang J (2000) Review of galloping control methods. Electra no 191: 44–61

    Google Scholar 

  • Wang J, Lilien JL (July 1998) Overhead electrical transmission line galloping. A full multi-span 3-dof model, some applications and design recommendations. IEEE Transactions on Power Delivery, vol 13, no 3: 909–916

    Article  Google Scholar 

  • Washizu K, Ohya A (1978) Aeroelastic instability of rectangular cylinders in a heaving mode. Journal of Sound and Vibration, 59: 195–210

    Article  Google Scholar 

  • Wijker WJ, Leppers PH (1987) 25 years of galloping experience in the Netherlands. CIGRE SC22-WG11TFG Report 87-0

    Google Scholar 

  • Zdravkovich MM (1984) Classification of flow-induced oscillations of two parallel circular cylinders in various arrangement. Symposium on flow-induced vibration, vol 2, ASME: 1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Dyke, P., Havard, D., Laneville, A. (2008). Effect of Ice and Snow on the Dynamics of~Transmission Line Conductors. In: Farzaneh, M. (eds) Atmospheric Icing of Power Networks. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8531-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8531-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8530-7

  • Online ISBN: 978-1-4020-8531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics