Skip to main content

Scale Modeling of Medical Molecular Systems

  • Chapter
Progress in Scale Modeling

Abstract

Human body is mainly made by several biomacromolecules. The mal-function of proteins and nucleic acids set up our diseases; it would be considered that ca. 70% of human diseases occurred by that of receptor proteins, especially. Therefore the clarification of relationship between structure and function on bio-macromolecule is one of the highest priorities in the pharmaceutical science field. Nowadays, several technical innovations on structural biology (sample expression by genetic technology, innovation of measurements; i.e. SOR (Synchrotron Orbit Radiation) or giant NMR (Nuclear Magnetic Resonance) and so on, structural analysis calculation by super computer) make easy to analyze stereo structure of macromolecules. However, number of determined structures would not clear up the relationship between structure and function on biomacromolecules systematically.

On the other hand, the author found the molecular model on biomacromolecule resembles a “space truss structure” in the Building Engineeringtectonics or a “space link” in the Mechanics. Therefore the molecular model must be obeyed by the rules on these Kinematics at least, and a real molecule may be obeyed also. The simplest principle, the balance of internal degree of freedom and number of restraints in the molecule, would be determined the molecular stiffness or flexibility or mechanism. DNA and some protein structures will be discussed under the principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watson, J. D., Crick, F. H. C. “Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid”. Nature, 4356 April 25, (1953).

    Google Scholar 

  2. Matsumoto O., Taga T., Matsushima M., Higashi T., Machida K. “Multiple binding of inhibitors in the complex formed by bovine trypsin and fragments of a synthetic inhibitor, 4-[4-(N,N-dimethylcarbamoxylmethoxycarbonylmethyl)phenoxycarbonylphenyl]guanidinium methanesulfonate (FOY-305)”. Chem Pharm Bull (Tokyo). 38:2253–5. (1990).

    Google Scholar 

  3. Matsumoto, O., Taga T., Higashi T., Matsushima M., Machida K. “Complex formation by bovine trypsin and a tetrapeptide (Leu-Arg-Pro-Gly-NH2): X-ray structure analysis of the complex in the orthorhombic crystal form with low molecular packing density”. J. Protein Chem. 5: 589–93 (1990).

    Article  Google Scholar 

  4. Vassylyev, D., G. Katayanagi, K. Ishikawa, K. Tsujimoto-Hirano, M. Danno, M. Pahler, A., Matsumoto, O., Matsushima, M., Yoshida, H., Morikawa, K. “Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2’GMP”. J. Mol. Biol. 230: 979–96 (1993).

    Article  Google Scholar 

  5. Morikawa K., Matsumoto O., Tsujimoto M., Katayanagi K., Ariyoshi M., Doi T., Ikehara M., Inaoka T., Ohtsuka E. “X-ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer”. Science 256: 523–6. (1992).

    Article  Google Scholar 

  6. Morikawa K., Ariyoshi M., Vassylyev D.G., Matsumoto O., Katayanagi K., Ohtsuka E. “Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: Refinement at 1.45 A and X-ray analysis of the three active site mutants”., J. Mol. Biol. 249: 360–75 (1995).

    Article  Google Scholar 

  7. Pauling, L., Corey, R. B., Branson, H. R. “The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain”., Proc. Natl. Acad. Sci. USA 37: 205–11 (1951).

    Article  Google Scholar 

  8. Dickerson, R. E., Geis, I. The Structure and Action of Proteins, Harper & Row, New York, 1969.

    Google Scholar 

  9. Watson, J. D. The Double Helix, Atheneum, New York, 1967.

    Google Scholar 

  10. Drew, H. R., Dickerson, R. E. “Structure of a DNA dodecamer. III. Geometry of hydration”. J. Mol. Biol. 55: 379–400 (1981).

    Google Scholar 

  11. Conner, B. N., Takano, T., Tanaka, S., Itakura, K., Dickerson, R. E. “The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA”. Nature, 295: 294–9. (1982).

    Article  Google Scholar 

  12. Umehara, T., Kuwabara, S., Mashimo, S., Yagihara, S. “Dielectric study on hydration of B-, A-, and Z-DNA”. Biopolymers 30: 649–56 (1990).

    Article  Google Scholar 

  13. Sakurai, F., Inoue, R., Nishino, Y., Okuda, A., Matsumoto, O., Taga, T., Yamashita, F., Takakura, Y., Hashida, M. “Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression”. J Control Release. 66: 255–69 (2000)

    Article  Google Scholar 

  14. Sakurai, F., Nishioka, T., Saito, H., Baba, T., Okuda, A., Matsumoto, O., Taga, T., Yamashita, F., Takakura, Y., Hashida, M. “Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid”. Gene Ther. 6: 677–86. (2001).

    Article  Google Scholar 

  15. Lin, Z., Wang, C., Feng, X., Lin, M., Li, J., Bai, C. “The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizeing microscopy studies”. Nucleic Acids Res. 26: 3228–34 (1998).

    Article  Google Scholar 

  16. Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E., Nishimoto, I. “Identification of a Gs activator region of the beta 2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation”. Cell 67: 723–30 (1991).

    Article  Google Scholar 

  17. Okuda, A., Matsumoto, O., Akaji, M., Taga, T., Ohkubo, T., Kobayashi, Y. “Solution structure of intracellular signal-transducing peptide derived from human beta2-adrenergic receptor”. Biochem. Biophys. Res. Commun. 291:1297–301 (2002).

    Article  Google Scholar 

  18. Kikkou, T., Matsumoto, O., Ohkubo, T., Kobayashi, Y., Tsujimoto, G. “NMR structure of an intracellular loop peptide derived from prostaglandin EP3alpha receptor”. Biochem Biophys Res Commun. 345: 933–7 (2006).

    Article  Google Scholar 

  19. Hasegawa, H., Negishi, M., Ichikawa, A. “Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity”. J. Biol. Chem. 271: 1857–60 (1996).

    Article  Google Scholar 

  20. Negishi, M., Hasegawa, H., Ichikawa, A. “Prostaglandin E receptor EP3gamma isoform, with mostly full constitutive Gi activity and agonist-dependent Gs activity”. FEBS Lett. 386: 165–8. (1996).

    Article  Google Scholar 

  21. Ichikawa, A., Negishi, M., Hasegawa, H. “Three isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive Gi activity and agonist-dependent Gs activity”. Adv Exp Med Biol. 433: 239–42 (1997).

    Google Scholar 

  22. Hizaki, H., Hasegawa, H., Katoh, H., Negishi, M., Ichikawa, A. “Functional role of carboxyl-terminal tail of prostaglandin EP3 receptor in Gi coupling”. FEBS Lett. 414: 323–6 (1997).

    Article  Google Scholar 

  23. Lambright, D. G., Noel, J. P., Hamm, H. E., Siegler, P. B. “Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein”. Nature 369: 621–8 (1994).

    Google Scholar 

  24. Hangai, Y., Kawaguchi, K. “Keitai Kaiseki”. Baifukan, Tokyo, 1991, p. 67 (in Japanese).

    Google Scholar 

  25. Marquart, M., Walter, J., Deisenhofer, J., Bode, W., Huber, R. “The Geometry of the Reactive Site and of the Peptide Groups in Trypsin, Trypsinogen and its Complexes with Inhibitors”. Acta Crystallogr., Sect. B v39: 480 (1983).

    Article  Google Scholar 

  26. Takeuchi, Y., Nonaka, T., Nakamura, K. T., Kojima, S., Miura, K.-I., Mitsui, Y. “Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin”. Proc. Natl. Acad. Sci. USA 89: 4407–11 (1992).

    Google Scholar 

  27. Matsumoto, O., Taga, T., Higashi, T., Matsushima, M., Machida, K. “Complex formation by bovine trypsin and a tetrapeptide (Leu-Arg-Pro-Gly-NH2): X-ray structure analysis of the complex in the orthorhombic crystal form with low molecular packing density”. J. Protein Chem. 9: 589–593 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kikkou, T., Iwabuchi, S., Matsumoto, O. (2008). Scale Modeling of Medical Molecular Systems. In: Saito, K. (eds) Progress in Scale Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8682-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8682-3_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8681-6

  • Online ISBN: 978-1-4020-8682-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics