Skip to main content

Neurons and Cell Swelling-Induced Peptide Hormone Secretion

  • Chapter
Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

  • 1210 Accesses

Abstract

Cell swelling (most often induced by extracellular hypotonicity or intracellular hypertonicity) evokes exocytosis of material stored in secretory vesicles resulting in a secretory burst of peptide hormones or enzymes from various types of cells. Swelling induces secretion from neuron axons, dendrites and bodies. Cell swelling-induced exocytosis possesses limited selectivity, cells specifically involved in water and salt regulation retain their specific response to osmotic stimuli; neurons of the hypothalamic supraoptic and paraventricular nuclei release oxytocin, vasopressin and angiotensin II and III in response to hyperosmotic stimulation. This atypical response related to their regulatory role could be obviated by GdCl3 and at these conditions general unspecific response (exocytosis) to swelling-inducing stimuli emerged. It is concluded that swelling induced exocytosis is an ancient mechanism generally present in cells, in some of them is covered by specific response mediated by specific signalling. Swelling-induced hormone secretion could have pathophysiological implications especially when induced by ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Back N, Soinila S, Tornquist K (2000) Monensin and hypo-osmolar medium cause calcium independent beta-endorphin secretion from melanotropes. Neuroendocrinology 71: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Bacová Z, Benicky J, Lukyanetz EE, Lukyanets IA, Štrbák V (2005) Different signalling pathways involved in glucose and cell swelling-induced insulin secretion by rat pancreatic islets in vitro. Cell Physiol Biochem 16: 59–68.

    Google Scholar 

  • Bacova Z, Baqi L, Benacka O, Payer J, Križanová 0, Zeman M, Sramova L, Zorad Š, Štrbák V (2006a) Thyrotropin-releasing hormone in rat heart: effect of swelling, angiotensin II and renin gene. Acta Physiologica 187: 313–319.

    Article  CAS  Google Scholar 

  • Bacova Z, Kiss A, Jamal B, Payer J Jr, Štrbák V (2006b) The effect of swelling on TRH and oxytocin secretion from hypothalamic structures. Cell Mol Neurobiol 26: 1047–1055.

    CAS  Google Scholar 

  • Bacova, Z, Orecna, M, Hafko, R, Štrbák, V (2007) Cell swelling-induced signalling for insulin secretion bypasses steps involving G proteins and PLA2 and is N-ethylmaleimide insensitive. Cell Physiol Biochem 20: 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Bartekova M, Sulova Z, Pancza D, Ravingerova T, Stankovicova T, Styk J, Breier A (2004) Proteins released from liver after ischaemia induced an elevation of heart resistance against ischaemia-reperfusion injury: 2. Beneficial effect of liver ischaemia in situ. Gen Physiol Biophys 23:489–497.

    PubMed  CAS  Google Scholar 

  • Baylis PH (2003) The syndrome of inappropriate antidiuretic hormone secretion. Int J Biochem Cell Biol 35:1495–1499.

    Article  PubMed  CAS  Google Scholar 

  • Benicky J, Greer MA, Strbak V (1997) Hyposmolar medium and ethanol in isosmotic solution induce the release of thyrotropin-releasing hormone (TRH) by isolated rat pancreatic islets. Life Sci 60: 865–872.

    Article  PubMed  CAS  Google Scholar 

  • Blackard WG, Kikuchi M, Rabinovitch A, Renold AE (1975) An effect of hyposmolarity on insulin release in vitro. Am J Physiol; 228: 706–713.

    PubMed  CAS  Google Scholar 

  • Bourque CW, Oliet SHR (1997) Osmoreceptors in the central nervous system. Ann Rev Physiol 59: 601–619.

    Article  CAS  Google Scholar 

  • Chakfe Y, Bourque CW (2000) Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nat Neurosci 3: 572–579.

    Article  PubMed  CAS  Google Scholar 

  • Chriguer RS, Antunes-Rodrigues J, Franci CR (2003) Atrial natriuretic peptide mediates oxytocin secretion induced by osmotic stimulus. Brain Res Bull 59:505–511.

    Article  PubMed  CAS  Google Scholar 

  • Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507: 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Ejima Y, Nakamura Y, Michimata M, Hatano R, Kazama I, Sanada S, Arata T, Suzuki M, Miyama N, Sato A, Satomi S, Fushiya S, Sasaki S, Matsubara M (2006) Transient body fluid accumulation and enhanced NKCC2 expression in gerbils with brain infarction. Nephron Physiol 103:25–32.

    Article  CAS  Google Scholar 

  • Greenwald JE, Apkon M, Hruska KA, Needleman P (1989) Stretch-induced atriopeptin secretion in the isolated rat myocyte and its negative modulation by calcium. J Clin Invest 83: 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • Greer MA, Greer SE, Maruta S, (1990) Hyposmolar stimulation of secretion of thyrotropin, prolactin, and luteinizing hormone does not require extracellular calcium and is not inhibited by colchicine, cytochalasin B, ouabain, or tetrodotoxin. Proc Soc Exp Biol Med 193: 203–209.

    PubMed  CAS  Google Scholar 

  • Greer MA, Greer SE, Opsahl Z, Maruta S (1985) Comparison of hyposmolar and hyperosmolar effects on in vitro luteinizing hormone secretion by anterior pituitary cells. Proc Soc Exp Biol Med 178: 24–28.

    PubMed  CAS  Google Scholar 

  • Greer MA, Greer SE, Opsahl Z, McCafferty L, Maruta S (1983) Hyposmolar stimulation of in vitro pituitary secretion of luteinizing hormone: a potential clue to the secretory process. Endocrinol 113: 1531–1533.

    CAS  Google Scholar 

  • Groulx N, Boudreault F, Orlov SN, Grygorczyk R (2006) Membrane reserves and hypotonic cell swelling. J Membr Biol 214: 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch – Eur J Physiol 453: 333–351.

    Article  CAS  Google Scholar 

  • Hattori T, Morris M, Alexander N, Sundberg DK (1990) Extracellular oxytocin in the paraventricular nucleus: hyperosmotic stimulation by in vivo microdialysis. Brain Res 506: 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Sundberg DK, Morris M (1992) Central and systemic oxytocin release: a study of the paraventricular nucleus by in vivo microdialysis. Brain Res Bull 28: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Pedersen SF (2006) Sensors and signal transduction pathways in vertebrate cell volume regulation. In Lang F. (ed) Mechanisms and Significance of Cell Volume Regulation. Contrib Nephrol 152: 54–104.

    Article  PubMed  CAS  Google Scholar 

  • Hussy N, Deleuze C, Desarmenien MG, Moos FC (2000) Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 62: 113–134.

    Article  PubMed  CAS  Google Scholar 

  • Inukai T, Wang X, Greer SE, Greer MA (1992) Cell swelling induced by medium hyposmolarity or isosmolar urea stimulates gonadotropin-releasing hormone secretion from perifused rat median eminence. Brain Res 599: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Jakab M, Furst J, Gschwentner M, Botta G, Garavaglia ML, Bazzini C, Rodighiero S, Meyer G, Eichmueller S, Woll E, Chwatal S, Ritter M, Paulmichl M (2002) Mechanisms sensing and modulating signals arising from cell swelling. Cell Physiol Biochem 12: 235–258.

    Article  PubMed  CAS  Google Scholar 

  • Jakab M, Grundbichler M, Benicky J, Ravasio A, Chwatal S, Schmidt S, Strbak V, Furst J, Paulmichl M, Ritter M (2006) Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells. Cell Physiol Biochem 18: 21–34.

    Article  PubMed  CAS  Google Scholar 

  • Kiss A, Adamova A, Kubovcakova L, Jamal B, Bacová Z, Zorad S, Tybitanclova K, Kvetnansky R, Strbak V (2004) Effect of immobilization on in vitro thyrotropin-releasing hormone release from brain septum in wild-type and corticotropin-releasing hormone knock-out mice. Ann N Y Acad Sci 1018: 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Kiss A, Nikodemova M, Kucerova J, Štrbák V (2005) Colchicine treatment differently affects releasable thyrotropin-releasing hormone (TRH) pools in the hypothalamic paraventricular nucleus (PVN) and the median eminence (ME). Cell Mol Neurobiol 25: 681–695.

    Article  CAS  Google Scholar 

  • Knott TK, Dayanithi G, Coccia V, Custer EE, Lemos JR, Treistman SN (2000) Tolerance to acute ethanol inhibition of peptide hormone release in the isolated neurohypophysis. Alcohol Clin Exp Res 24: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Kucerova J, Strbak V (2001) The osmotic component of ethanol and urea action is critical for their immediate stimulation of Thyrotropin-Releasing Hormone (TRH) release from rat brain septum. Physiol Res 50: 309–314.

    PubMed  CAS  Google Scholar 

  • Landgraf R and Ludwig M (1991) Vasopressin release within the supraoptic and paraventricular nuclei of the rat brain: osmotic stimulation via microdialysis. Brain Res 558: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Malkinson T, Horn T, Veale WL, Lederis K, Pittman QJ (1990) Release of vasopressin and oxytocin by paraventricular stimulation in rats. Am J Physiol 258: R155–R159.

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Häussinger D (1998a) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306.

    CAS  Google Scholar 

  • Lang F, Busch GL, Voelkl H (1998b) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8: 1–45.

    Article  CAS  Google Scholar 

  • Lopatina LP, Waseem TV, Fedorovich SV, Konev SV (2005) Lanthanides induce neurotransmitter release from the vesicular pool in rat brain synaptosomes [Article in Russian] Biofizika 50:1120–1124.

    PubMed  CAS  Google Scholar 

  • Ludwig M, Bull PM, Tobin VA, Sabatier N, Landgraf R, Dayanithi G, Leng G (2005) Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurons. J Physiol 564: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Callahan MF, Neumann I, Landgraf R, Morris M (1994) Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J Neuroendocrinol 6: 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M and Landgraf R (1992) Does the release of vasopressin within the supraoptic nucleus of the rat brain depend upon changes in osmolality and Ca2+/K+? Brain Res 576: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Sabatier N, Bull PM, Landgraf R, Dayanithi G, Leng G (2002) Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418:85–89.

    Article  PubMed  CAS  Google Scholar 

  • Miley HE, Sheader EA, Brown, PD, Best L (1997) Glucose-induced swelling in rat pancreatic beta-cells. J Physiol 504: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Miller M (2006) Hyponatremia and arginine vasopressin dysregulation: mechanisms, clinical consequences, and management. J Am Geriatr Soc 54:345–353.

    Article  PubMed  Google Scholar 

  • Moos F, Poulain DA, Rodriguez F, Guerne Y, Vincent JD, Richard P (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76:593–602.

    Article  PubMed  CAS  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113: 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Najvirtova M, Baqi L, Kucerova J, Strbak V (2002) Cell swelling induced secretion of TRH by posterior pituitary, hypothalamic paraventricular nucleus and pancreatic islets: effect of L-canavanine. Cell Mol Neurobiol 22: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Najvirtova M, Greer SE, Greer MA, Baqi L, Benicky J, Strbak V (2003) Cell volume induced hormone secretion: Studies on signal transduction and specificity. Cell Physiol Biochem 13: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Nikodemova M, Greer MA, Strbak V (1999) Hypo-osmolarity stimulates and high sodium concentration inhibits thyrotropin-releasing hormone secretion from rat hypothalamus. Neurosci 88: 1299–1306.

    Article  CAS  Google Scholar 

  • Nikodemova M, Strbak V, Greer SE, Greer MA (1995) Isosmolar ethanol or urea stimulate hypophysiotropic TRH secretion from both the hypothalamic paraventricular nuclei and median eminence. Thyroid 5: S161.

    Google Scholar 

  • Oliet SHR, Bourque CW (1996) Gadolinium uncouples Mechanical detection and osmoreceptor potential in Supraoptic neurons. Neuron 16: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Orlov SN, Mongin AA (2007) Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293: H2039–H2053.

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neurosci 32: 435–439.

    Article  CAS  Google Scholar 

  • Qadri F, Edling O, Wolf A, Gohlke P, Culman J, Unger T (1994) Release of Angiotensin in the paraventricular nucleus in response to hyperosmotic stimulation in conscious rats: a microdialysis study. Brain Res 637: 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Pasantes-Morales H, Moran J, Schousboe A (1990) Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia 3:427–432.

    Article  PubMed  CAS  Google Scholar 

  • Romano-Silva MA, Gomez MV, Brammer MJ (1994) The use of gadolinium to investigate the relationship between Ca2+ influx and glutamate release in rat cerebrocortical synaptosomes. Neurosci Lett 178(1): 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XM, Jiang M, Van der Ploeg L, Leng G (2003) Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci 23:10351–10358.

    PubMed  CAS  Google Scholar 

  • Sato N, Wang X, Greer MA, Greer SE, McAdams S, Oshima T (1990) Medium hyposmolarity stimulates prolactin secretion in GH4C1 cells by inducing an increase in cytosolic free calcium. Endocrinol 127: 957–964.

    Article  CAS  Google Scholar 

  • Sato N, Wang X, Greer MA (1991) Hormone secretion stimulated by ethanol-induced cell swelling in normal rat adenohypophyseal cells. Am J Physiol 260: E946–E950.

    PubMed  CAS  Google Scholar 

  • Sato N, Wang X, Greer MA (1990) Hyposmolarity stimulates exocytosis from human polymorphonuclear leukocytes. Am J Med Sci 289: 309–312.

    Article  Google Scholar 

  • Skott O (1986) Calcium and osmotic stimulation in renin release from isolated rat glomeruli. Pflugers Arch; 406: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Soldo BL, Giovannucci DR, Stuenkel EL, Moises HC (2004) Ca2+ and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus. J Physiol 555: 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Straub SG, Daniel S, Sharp GW (2002) Hyposmotic shock stimulates insulin secretion by two distinct mechanisms. Studies with the betaHC9 cell. Am J Physiol Endocrinol Metab 282: E1070–E1076.

    PubMed  CAS  Google Scholar 

  • Strbak V, Benicky J, Greer SE, Bacova Z, Najvirtova M, Greer MA (2004) Cell swelling-induced peptide hormone secretion. In: P. Lauf and N. Adragna (editors): Cell Volume and Signalling, Advances in Experimental Medicine and Biology, Volume 559, pp. 325–330. Springer Science + Business Media Inc. New York.

    Google Scholar 

  • Štrbák V, Greer MA (2000) Regulation of hormone secretion by acute cell volume changes: Ca2+ -independent hormone secretion. Cell Physiol Biochem 10: 393–402.

    Article  PubMed  Google Scholar 

  • Štrbák V (2006) Cell Volume and Peptide Hormone Secretion. Contrib Nephrol 152: 210–220.

    Article  PubMed  Google Scholar 

  • Subramanian MG (1999) Alcohol inhibits suckling-induced oxytocin release in the lactating rat. Alcohol; 19: 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Thiel G (1995) Recent breakthroughs in neurotransmitter release: Paradigm for regulated exocytosis? NIP 10: 42–46.

    CAS  Google Scholar 

  • Thinnes F P, Walter G, Hellmann KP, Hellmann T, Merker R, Kiafard Z, Eben-Brunnen J, Schwarzer C, Gotz H, Hilschmann N (2001) Gadolinium as an opener of the outwardly rectifying Cl(–) channel (ORCC). Is there relevance for cystic fibrosis therapy? Pflugers Arch 443: Suppl 1:S111–116.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Sato N, Greer MA, Greer SE, McAdams S (1989) Cell swelling induced by the permeant molecules urea or glycerol induces immediate high amplitude thyrotropin and prolactin secretion by perifused adenohypophyseal cells. Biochem Biophys Res Commun 163: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Sato N, Greer MA (1992) Medium hyperosmolarity inhibits prolactin secretion induced by depolarizing K+ in GH4C1 cells by blocking Ca2+ influx. Mol Cell Endocrinol 83: 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Waseem TV, Kolos VA, Lopatina LP, Fedorovich SV (2007). Lanthanides induce neurotransmitter release from vesicular pool in presynaptic brain endings. In: Selected papers for the Joint Meeting of the Slovak Physiological Society, the Physiological Society and the Federation of European Physiological Societies (Bratislava, September 11–14, 2007), V. Štrbák, editor, (Medimond International Proceedings, Bologna 2007), pp. 7–12.

    Google Scholar 

  • Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 148: 1–80.

    Article  PubMed  CAS  Google Scholar 

  • Wright AR, Rees SA (1997) Targeting ischaemia – cell swelling and drug efficacy. Trends Pharmacol Sci 18:224–228.

    PubMed  CAS  Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Sci 243: 1068–1071.

    Article  CAS  Google Scholar 

  • Yurinskaya VE, Goryachaya TS, Guzhova IV, Moshkov AV, Rozanov YM, Sakuta GA, Shumilina EV, Vassilieva IO, Lang F, Vereninov AA (2005) Potassium and Sodium Balance in U937 Cells During Apoptosis With and Without Cell Shrinkage. Cell Physiol Biochem 16: 155–162

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Bourque CW (2006) Calcium permeability and flux through osmosensory transduction channels of isolated rat supraoptic nucleus neurons. Eur J Neurosci 23: 1491–1500.

    Article  PubMed  Google Scholar 

  • Zhang BJ, Yamashita M, Fields R, Kusano K, Gainer H (2005) EGFP-Tagged Vasopressin Precursor Protein Sorting Into Large Dense Core Vesicles and Secretion From PC12 Cells. Cell Mol Neurobiol 25: 581–565.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Štrbák, V. (2009). Neurons and Cell Swelling-Induced Peptide Hormone Secretion. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_4

Download citation

Publish with us

Policies and ethics