Skip to main content

Electrical Conduction and Dielectric Properties in Piezoelectric Fibre Composites

  • Conference paper
Smart Materials for Energy, Communications and Security

Abstract

Smart structural composites are multifunctional structural materials which can perform functions such as sensing strain, vibration reduction and are essential because of their relevance to mitigation and structural vibration control. Piezoelectric fiber composites were developed to overcome drawbacks of typical monolithic piezoceramic (PZT) actuators. Piezoelectric fiber composites can improve the performance of various structures, and can be subject to wide temperature range where the thermoelastic behavior is important. A series of 1–3 connectivity PZT fibers/epoxy resin composites with different volume fraction is studied by means of dielectric spectroscopy in the wide frequency range 0.1 Hz–100 kHz and temperature varying from the ambient to 210°C. The conduction phenomenon is analyz ed using the “universal power law” and its scaling is studied by the Jonscher's universal power law. At low frequencies ac conductivity tends to be constant, while in the high frequency region verifies the exponential law of conductivity. In the intermediate frequencies, the examined systems exhibit strong dispersion with frequency and the produced fitting curves deviate from the experimental data by not being able to describe the recorded relaxation and pointing out that in the vicinity of the relaxation peaks the power law is not applicable. Finally, dipolar relaxation mechanisms and interfacial or Maxwell-Wagner-Sillars relaxation were revealed in the frequency range and temperature interval of the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Newnham and A. Amin, Chem. Tech. 29:38 (1999).

    CAS  Google Scholar 

  2. K. Uchino, Piezoelectrics and Ultrasonic Applications, Kluwer, Deventer, MO (1998).

    Google Scholar 

  3. S. Trolier-McKinsty and R.E. Newnham, Mater. Res. Bull. 18:27 (1993).

    Google Scholar 

  4. W.A. Smith, The role of piezocomposites in ultrasonic transducers, Proceedings of the 1989 IEEE Ultrasonic Symposium, pp. 755-766 (1989).

    Google Scholar 

  5. P. Challende, IEEE Trans. Ultrason. Ferroelect. Freq. Control 37:135 (1990).

    Article  ADS  Google Scholar 

  6. S. Sripada, J. Unsworth and M. Krishnamurty, Mat. Res. Bull. 31(6):731 (1996).

    Article  CAS  Google Scholar 

  7. C. Richard, L. Goujon, D. Guyomar, H.S. Lee and G. Grange, Ultrasonics 40:895 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. A. Fernandes and J. Pouget, Eur. J. Mech. A/Solids 21:629 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Hammami, M. Arous, M. Lagache and A. Kallel, Comp.: Part A 37(1):01 (2006).

    Article  CAS  Google Scholar 

  10. H. Hammami, M. Arous, M. Lagache and A. Kallel, J. Alloys Compd. 430:01 (2007).

    Article  CAS  Google Scholar 

  11. J.C. Maxwell, Electricity and magnetism, Clarendon, Oxford (1892).

    Google Scholar 

  12. K.W. Wagner, Arch. Elektrotech., Berlin (1914).

    Google Scholar 

  13. R.W. Sillars, J. Inst. Eng. 80:378 (1937).

    Google Scholar 

  14. Advanced Cerametrics Incorporated, http://www.advancedcerametrics.com, P.O. Box 128, Lambertville, NJ 08530-0128.

  15. R.B. Cass and I.A. Cornejo, Adv. Cerametr., Intl. Ceramic Ind. Mag. (2001).

    Google Scholar 

  16. EMPA, Materials Science and Technology, http://www.empa.ch/, Dübendorf (2003).

  17. D.L. Sidebottom, Phys. Rev. Lett. 83(5):983 (1999).

    Article  ADS  CAS  Google Scholar 

  18. B. Roling, A. Happe, K. Funke and M.D. Ingram, Phys. Rev. Lett. 78(11):2160 (1997).

    Article  ADS  CAS  Google Scholar 

  19. S. Capaccioli, M. Lucchesi, P.A. Rolla and G. Ruggeri, J. Phys.: Condens. Matter 10:5595 (1998).

    Article  ADS  CAS  Google Scholar 

  20. D.S. McLachlan and M.B. Heaney, Phys. Rev. B 60(18):12746 (1999).

    Article  ADS  CAS  Google Scholar 

  21. M.T. Connor, S. Roy, T.A. Ezquerra and F.J. Balta Calleja, Phys. Rev. B 57(4):2286 (1998).

    Article  ADS  CAS  Google Scholar 

  22. P. Pötschke, S.M. Dudkin and I. Alig, Polymer 44:5023 (2003).

    Article  CAS  Google Scholar 

  23. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer, Heidelberg, Germany (2002).

    Google Scholar 

  24. J.C. Dyre and T.B. Schroeder, Rev. Mod. Phys. 72(3):873 (2000).

    Article  ADS  Google Scholar 

  25. G.C. Psarras, E. Manolakaki and G.M. Tsangaris, Composites: Part A 34:1187 (2003).

    Article  CAS  Google Scholar 

  26. H. Böttger and U.V. Bryskin, Hopin Conduction in Solids, vol. 41, Verlag Akademie, Berlin, pp. 169-213 (1985).

    Google Scholar 

  27. G.C. Psarras, Composites: Part A 37:1545 (2006).

    Article  CAS  Google Scholar 

  28. A.K. Jonscher, Nature 267:673 (1977).

    Article  ADS  CAS  Google Scholar 

  29. G.M. Tsangaris, G.C. Psarras and E. Manolakaki, Adv. Composites Lett. 8(1):25 (1999).

    Google Scholar 

  30. R. Vijayalakshmi Rao and M.H. Shridhar, Mater. Lett. 55:34 (2002).

    Article  CAS  Google Scholar 

  31. R. Vijayalakshmi Rao and M.H. Shridhar, Mater. Sci. Engin. A 35:73 (2002).

    Google Scholar 

  32. T.B. Schröder and J.C. Dyre, Phys. Chem. Chem. Phys. 4:3173 (2002).

    Article  CAS  Google Scholar 

  33. P.S. Anantha and K. Hariharan, Materials Sci. Engin. B 121:12 (2005).

    Article  CAS  Google Scholar 

  34. S.A. Saafan, A.S. Seoud and R.E. El Shater, Physica B 365:27 (2005).

    Article  ADS  CAS  Google Scholar 

  35. A.K. Jonscher, Universal Relaxation Law, Chelsea Dielectrics, London (1992).

    Google Scholar 

  36. J.C. Dyre, J. Appl. Phys. 64(5):2456 (1988).

    Article  ADS  Google Scholar 

  37. W. Woward, J.R. Starkweather and P. Avakian, J. Polym. Sci.: Part B. 30:637 (1992).

    Article  Google Scholar 

  38. G.M. Tsangaris, G.C. Psarras and A.J. Kontopoulos, J. Non-Cryst. Solids 131/133(2):1164 (1991).

    Google Scholar 

  39. M. Arous, A. Kallel, Z. Fakhfakh and G. Perrier, J. Phys. Soci. Japan 66(11):3665 (1997).

    Article  ADS  CAS  Google Scholar 

  40. G.M. Tsangaris, G.C. Psarras and N. Kouloumbi, J. Mater. Sci. 33:2027 (1998).

    Article  ADS  CAS  Google Scholar 

  41. G.M. Tsangaris and G.C. Psarras, J. Mater. Sci. 34:2151 (1999).

    Article  CAS  Google Scholar 

  42. M. Mudarra, R. Diaz-Calleja, J. Belana, J.C. Canadas, J.A. Diego, J. Sellarès and M.J. Sanchis, Polymer 42:1647 (2001).

    Article  CAS  Google Scholar 

  43. M. Arous, F. Karray, H. Hammami and A. Kallel, Phys. Chem. News 10(1):5 (2003).

    CAS  Google Scholar 

  44. A.G. Charnetskaya, G. Polizos, V.I. Shtompel, E.G. Privalko, Yu Yu Kercha and P. Pissis, Europ. Polym. J. 39:2167 (2003).

    Google Scholar 

  45. L. Okrasaan, G. Boiteux, J. Ulanskia and G. Seytre, Polymer 42:3817 (2001).

    Article  Google Scholar 

  46. C.T. Moynihan, J. Non-Cryst. Solids 172-174(2):1395 (1994).

    Article  ADS  CAS  Google Scholar 

  47. K.L. Ngai and C. Leon, Solid State Ionics 195:81 (1999).

    Article  Google Scholar 

  48. M. Schimbo, M. Ochi and M. Yoshizumi, J. Polym. Sci. Polym. Phys. 25:1817 (1987).

    Article  Google Scholar 

  49. M. Ochi, M. Shimbo, M. Saga and N. Takashima, J. Polym. Sci. 24:2185 (1986).

    CAS  Google Scholar 

  50. H.J. Ploehn and J.Y. Wang, J. Appl. Polym. Sci. 59:345 (1996).

    Article  Google Scholar 

  51. G.A. Pogany, Br. Polym. J. 1:177 (1969).

    Article  CAS  Google Scholar 

  52. J.D. Keenan, J.C. Seferis and J.T. Quinlivan, J. Appl. Polym. Sci. 24:2375 (1979).

    Article  CAS  Google Scholar 

  53. I.D. Maxwell and R.A. Pethrick, J. Appl. Polym. Sci. 28:2363 (1983).

    Article  CAS  Google Scholar 

  54. K. Doukkali and Y. Segui, J. Appl. Polym. Sci. 41:1533 (1990).

    Article  CAS  Google Scholar 

  55. A. Schönhals, Novocontrol application notes, Dielectrics 1 (2003).

    Google Scholar 

  56. D.L. Sidebottom, Phys. Rev. Lett. 82:3653 (1999).

    Article  ADS  CAS  Google Scholar 

  57. D.L. Sidebottom, P.F. Green and R.K. Brow, Phys. Rev. B 51(5):2770 (1995).

    Article  ADS  CAS  Google Scholar 

  58. G.M. Tsangaris, G.C. Psarras and E. Manolakaki, Adv. Composites. Lett. 8(1):25 (1999).

    Google Scholar 

  59. G.C. Psarras, E. Manolakaki and G.M. Tsangaris, Composites: Part A 33:375 (2002).

    Article  Google Scholar 

  60. J. Malecki and B. Hilczer, Ferroelectr. Polym. Ceram-Polym. Compos. 92-99:181 (1994).

    Google Scholar 

  61. A. Bel Hadji Mohamed, J.L. Miane and H. Zangar, Polym. Int. 50:773 (2001).

    Article  Google Scholar 

  62. M.D. Migahed, M. Ishra, T. Fahmy and A. Barakat, J. Phys. and Chem. Solids 65:1121 (2004).

    Article  ADS  CAS  Google Scholar 

  63. D.P. Almond and A.R. West, Solid States Ionics 9-10(1):277 (1983).

    Article  CAS  Google Scholar 

  64. J.M. Réau, Xu Y. Jun, J. Senegas, Ch. Le Deit and M. Poulain, Solid States Ionics 95:191 (1997).

    Google Scholar 

  65. K.L. Ngai and C. Leon, Phys. Rev. B 60:9396 (1999).

    Article  ADS  CAS  Google Scholar 

  66. T.B. Schröder and J.C. Dyre, Phys. Rev. Lett. 84:310 (2000).

    Article  PubMed  ADS  Google Scholar 

  67. D.L. Sidebottom, P.F. Green and R.K. Brow, Phys. Rev. Lett. 74:5068 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  68. B. Roling, Solid State Ionics 105:185 (1998).

    Article  CAS  Google Scholar 

  69. D.L. Sidebottom and T. Zhang, Phys. Rev. B 62:5503 (2000).

    Article  ADS  CAS  Google Scholar 

  70. B. Roling and C. Martiny, Phys. Rev. Lett. 85:1274 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  71. A. Ghosh and A. Pan, Phys. Rev. Lett. 84:2188 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  72. D.P. Almond and A.R. West, Solid State Ionics 23:27 (1987).

    Article  CAS  Google Scholar 

  73. H. Namikawa, J. Non-Cryst. Solids 18:173 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Hammami, H., Arous, M., Lagache, M., Kallel, A. (2008). Electrical Conduction and Dielectric Properties in Piezoelectric Fibre Composites. In: Luk'yanchuk, I.A., Mezzane, D. (eds) Smart Materials for Energy, Communications and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8796-7_12

Download citation

Publish with us

Policies and ethics