Skip to main content

The Physics of Tsunami Formation by Sources of Nonseismic Origin

  • Chapter
Physics of Tsunamis
  • 2474 Accesses

The physics is described of tsunami formation by sources of nonseis-mic origin: landslides, volcanic eruptions, meteorological causes and cosmic bodies falling into the ocean. Short descriptions are given of certain remarkable historical events (with the exception of cosmogenic tsunamis). Approaches to the mathematical description of tsunami generation by these sources are expounded. Basic regularities, relating parameters of a source and of the tsunami wave generated by it are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assier-Rzadkiewicz S., Heinrich P., Sabatier P. C. Savoye B., Bourillet J. F. (2000): Numerical modeling of landslide-generated tsunami: The 1979 Nice event. Pure Appl. Geophys. 157 1707–1727

    Article  Google Scholar 

  • Basov B. I., Dorfman A. A., Levin B. W., Kharlamov A. A. (1981): On perturbations of the ocean surface, excited by the eruption of an underwater volcano. Vulcanologia i Seismologia (in Russian). No 1 93–98

    Google Scholar 

  • Belousov A., Voight B., Belousova M., Muravyev Y. (2000): Tsunamis generated by subaquatic volcanic explosions: unique Data from 1996 eruption in Karymskoye Lake, Kamchatka, Russia. Pure Appl. Geophys. 157 1135–1143

    Article  Google Scholar 

  • Bondarenko A. L., Bychkov V. S. (1983): Marine baric waves. Meteorologia i gidrologia (in Russian). No 6 86–91

    Google Scholar 

  • Choi B. H., Pelinovsky E., Kim K. O., Lee J. S. (2003): Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat. Hazard. Earth Syst. Sci. 3 321–332

    Google Scholar 

  • Crawford D. A., Mader C. (1998): Modeling asteroid impact and tsunami. Sci. Tsunami Hazard 16 21–30

    Google Scholar 

  • Didenkulova I. I., Kurkin A. A., Pelinovsky E. N. (2007): Run-up of solitary waves on slopes with different profiles. Izvestiya RAN, Atmos. Ocean. Phys. 43(3)

    Google Scholar 

  • Donn W. L., Ewing M. (1956): Stokes edge waves in Lake Michigan. Science 124 1238–1242

    Article  Google Scholar 

  • Egorov Yu. A. (1990): Hydrodynamic model of tsunami wave generation by eruption of submarine volcano. Natural catastrophes and disasters in the Far-East region. Publishing House of the Far-East branch of the USSR Academy of Sciences (in Russian), Vladivostok, 1 82–93

    Google Scholar 

  • Egorov Y. (2007): Tsunami wave generation by the eruption of underwater volcano. Nat. Hazard. Earth Syst. Sci. 7 65–69

    Google Scholar 

  • Fine I. V., Rabinovich A. B., Kulikov E. A., Thomson R. E., Bornhold B. D. (1998): Numerical modeling of landslide-generated tsunamis with application to the Skagway Harbor tsunami of November 3, 1994. In: Proc. Intern. Conf. on Tsunamis, Paris, May 26–28, 211–223

    Google Scholar 

  • Gill A. E. (1982): Atmosphere and Ocean Dynamics. Academic Press, New York

    Book  Google Scholar 

  • Gusiakov V. K. (2001): ‘Red’, ‘green’ and ‘blue’ Pacific tsunamigenic earthquakes and their relation with conditions of oceanic sedimentation. In: Tsunamis at the End of a Critical Decade. Edited by G. Hebenstreit, 17–32. Kluwer, Dordrecht Boston MA London

    Google Scholar 

  • Gutenberg B. (1939): Tsunamis and earthquakes. Bull. Seismol. Soc. Am. 29(4) 517–526

    Google Scholar 

  • Harbitz C. B. (1992): Model simulations of tsunamis generated by the Storegga slides. Mar. Geol. 105 1–21

    Article  Google Scholar 

  • Heinrich, P., Piatensi, A., Okal, E., Hébert, H. (2000): Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea, Geophys. Res. Lett. 27 3037–3040

    Article  Google Scholar 

  • Hibiya T., Kajiura K. (1982): Origin of Abiki phenomena (a kind of seiches) in Nagasaki Bay. J. Oceanogr. Soc. Jpn. 38(3) 172–182

    Article  Google Scholar 

  • Jansen E., Befring S., Bugge T., et al. (1987): Large submarine slides on the Norwegian continental margin: sediments, transport, and timing. Mar. Geol. 78 77–107

    Article  Google Scholar 

  • Jiang L., LeBlond P. H. (1992): The coupling of a submarine slide and the surface waves which it generates. J. Geophys. Res. 97(C8) 12731–12744

    Article  Google Scholar 

  • Jiang L., LeBlond P. H. (1994): Three-dimensional modeling of tsunami generation due to a submarine mudslide. J. Phys. Oceanogr. 24(3) 559–572

    Article  Google Scholar 

  • Imamura, F., Gica, E.C. (1996): Numerical model for tsunami generation due to subaqueous landslide along a coast. Sci. Tsunami Hazard. 14(1) 13–28

    Google Scholar 

  • Imamura F., Hashi K., Imteaz Md. M. A. (2001): Modelling for tsunamis generated by landsliding and debris flow. In: Tsunami Research at the End of Critical Decade (ed. G. T. Hebenstreit), pp. 209–228. Kluwer, Dordrecht

    Google Scholar 

  • Kharif Ch., Pelinovsky E. (2005): Asteroid impact tsunamis. Comptes Rendus Physique 6 361–366

    Article  Google Scholar 

  • Kovalev P. D., Rabinovich A. B., Shevchenko G. V. (1991): Investigation of long waves in the tsunami frequency band on the southwestern shelf of Kamchatka. Nat. Hazard. 4 141–159

    Article  Google Scholar 

  • Le Mehaute B., Wang S. (1996): Water waves generated by underwater explosion. World Sci., Singapoure

    Google Scholar 

  • Kulikov E. A., Rabinovich A. B., Fine I. V., Bornhold B. D., Thomson R. E. (1998): Tsunami generation by slides on the Pacific coast of North America and the role of tides (in Russian). Oceanology 38(3) 361–367

    Google Scholar 

  • Kurkin A. A., Pelinovsky E. N. (2004): Freak waves: facts, theory and modelling (in Russian). Publishing house of Nizhegorod. State Techical University, N. Novgorod

    Google Scholar 

  • Lander J. F. (1996): Tsunamis Affecting Alaska, 1737-1996. US Dept. Comm. Boulder

    Google Scholar 

  • Leonidova N. L. (1972): On the possibility of exciting tsunami waves by muddy flows (in Russian). Works of SakhKNII of Far-East Scientific Center of USSR Academy of Sciences. Tsunami waves. No 29, pp. 262–270, Yuzhno-Sakhalinsk

    Google Scholar 

  • Lichtman D. L. (1970): Physics of the atmospheric boundary layer (in Russian). Hydrometizdat, Leningrad

    Google Scholar 

  • Mader C. L., Gittings M. L. (2006): Numerical model for the Krakatoa hydrovolcanic explosion and tsunami. Sci. Tsunami Hazard. 24(3) 174–182

    Google Scholar 

  • Miller D. J. (1960): The Alaska Earthquake on July 10, 1958: Giant wave in Lituya Bay. Bull. Seismol. Soc. Am. 50(2) 253–266

    Google Scholar 

  • Minoura K., Imamura F., Kuran U., et al. (2003): Tsunami hazard associated with explosion-collapse processes of a dome complex on Minoan Thera. In: Submarine Landslides and Tsunamis, pp. 229–236 Kluwer, Dordrecht

    Google Scholar 

  • Mirchina N. P., Pelinovsky E. N. (1987): Dispersive amplification of tsunami waves (in Russian). Oceanology 27(1) 35–40

    Google Scholar 

  • Mitchel R. (1954): Submarine landslips of the coasts of Puerto-Rico and Barbados, West-Indies. Nature 173 4394

    Google Scholar 

  • Monserrat S., Ibbetson A., Thorpe A. J. (1991): Atmospheric gravity waves and the ‘rissaga’ phenomenon. Quart. J. Roy. Meteor. Soc. 117 553–570

    Google Scholar 

  • Munk W. H. (1962): Long ocean waves. In: The Sea. Ideas and Observations on Progress in the Study of the Sea, pp. 647–663 Wiley, New York

    Google Scholar 

  • Murty T. S. (1977): Seismic sea waves — tsunamis. Bull. Fish. Res. Board Canada 198, Ottawa

    Google Scholar 

  • Murty T. S. (1984): Storm surges. Meteorological ocean tides. Department of Fisheries and Oceans, Bulletin 212, Ottawa

    Google Scholar 

  • Nemtchinov, I. V., Svetsov V. V., Kosarev I. B., et al. (1997): Assessment of kinetic energy of me-teoroids detected by satellite-based light sensors. Icarus 130 259–274

    Article  Google Scholar 

  • Nomitsu T. (1935): A theory of tsunamis and seiches produced by wind and barometric gradient. Met. Coll. Sci. Imp. Univ. Kyoto A 18(4) 201–214

    Google Scholar 

  • Paine M. P. (1999): Asteroid Impacts: The Extra Hazard Due to Tsunami. Sci. Tsunami Hazard. 17(3) 155–166

    Google Scholar 

  • Parlaktuna M. (2003): Natural Gas Hydrates as a Cause of Underwater Landslides: a Review. In: Submarine Landslides and Tsunamis, pp. 163–169. Kluwer, Dordrecht

    Google Scholar 

  • Pelinovsky E. N. (1996): Hydrodynamics of tsunami waves (in Russian). Institute of Applied Physics, RAS, Nizhnii Novgorod

    Google Scholar 

  • Pelinovsky E., Talipova T., Kurkin A., Kharif C. (2001): Nonlinear mechanism of tsunami wave generation by atmospheric disturbances. Nat. Hazard. Earth Sys. Sci. 1 243–250

    Article  Google Scholar 

  • Rabinovich A. B. (1993): Long gravitational waves in the ocean: capture, resonance, irradiation (in Russian). Hydrometeoizdat, St. Petersburg

    Google Scholar 

  • Rabinovich A.B., Monserrat S. (1996): Meteorological tsunamis near the Balearic and Kuril Islands: descriptive and statistical analysis. Nat. Hazard. 13 55–90

    Article  Google Scholar 

  • Rabinovich A. B., Thomson R. E., Kulikov E. A., et al. (1999): The landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska: a case study. Geophys. Res. Lett. 26(19) 3009–3012

    Article  Google Scholar 

  • Rabinovich A. B., Thomson R. E., Bornhold B. D., et al. (2003): Numerical modelling of tsunamis generated by hypothetical landslides in the Strait of Georgia, British Columbia. Pure Appl. Geophys. 160(7) 1273–1313

    Article  Google Scholar 

  • Ren, P., Bornhold, B. D., Prior, D. B. (1996): Seafloor morphology and sedimentary processes, Knight Inlet, British Columbia. Sediment. Geol. 103 201–228

    Article  Google Scholar 

  • Roache P. J. (1976): Computational Fluid Dynamics. Hermousa, Albuquerque, N.M.

    Google Scholar 

  • Schmidt R. M., Holsapple K.A. (1982): Estimates of crater size for large-body impacts: Gravitational scaling results. GSA Special Paper. 190 93–101. GSA, Boulder

    Google Scholar 

  • Shoemaker, E. M., Wolfe R. F., Shoemaker C. S. (1990): Asteroid and comet flux in the neighborhood of Earth. In: Global Catastrophes in Earth History (edited by V. L. Sharpton, P. D. Ward,). GSA Special Paper 247. GSA. Boulder co, pp. 155–170

    Google Scholar 

  • Simpson J. E. (1987): Gravity currents: in the environment and laboratory. Halsted Press, England

    Google Scholar 

  • Solem J.C. (1999): Comet and Asteroid Hazards: threat and mitigation. Sci. Tsunami Hazard. 17(3) 141–153

    Google Scholar 

  • Tappin D. et al. (1998): Sediment slump likely caused 1998 Papua New Guinea Tsunami. EOS 80 329, 334, 340

    Article  Google Scholar 

  • Tikhonov A. N., Samarsky A. A. (1999): Equations of mathematical physics (in Russian). Publishing house of Moscow University, Moscow

    Google Scholar 

  • Tinti S., Pagnoni G., Piatanesi A. (2003): Simulation of tsunamis induced by volcanic activity in the Gulf of Naples (Italy). Nat. Hazard. Earth Syst. Sci. 3 311–320

    Google Scholar 

  • Titov V. V., Gonzalez F. I. (2001): Numerical study of the source of the July 17, 1998 PNG tsunami. In: Tsunami Research at the End of a Critical Decade (ed. Hebenstreit G. T.), pp. 197–207. Kluwer, Dordrecht

    Google Scholar 

  • Toon O. B., Zahnle K., Turco R. P., Covey C. (1994): Environmental perturbations caused by asteroid impacts. In: Hazards due to Comets and Asteroids (ed. Gehrels T.), pp. 791–826. University of Arizona Press, Tucson Az.

    Google Scholar 

  • Vilibic I., Domijan N., Orlic M., Leder N., Pasaric M. (2004): Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters. J. Geophys. Res. 109 C10001, doi:10.1029/2004JC002279

    Google Scholar 

  • Ward S. N., Asphaug E. (2000): Asteroid impact tsunami: a probabilistic hazard assessment. Icarus 145 64–78

    Article  Google Scholar 

  • Ward S. N., Asphaug E. (2002): Impact tsunami—Eltanin. Deep-Sea Res. Part II 49 1073–1079

    Google Scholar 

  • Ward S. N., Day S. (2001): Cumbre Vieja Volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophys. Res. Lett. 28 397–400

    Article  Google Scholar 

  • Ward S. N., Day S. (2003): Ritter Island Volcano—lateral collapse and the tsunami of 1888. Geo-phys. J. Int. 154 891–902

    Google Scholar 

  • Waythomas C. F., Neal C. A. (1998): Tsunami generation by pyroclastic flow during the 3500-year B P caldera-forming eruption of Aniakchak Volcano, Alaska. Bull. Volcanol. 60 110–124

    Article  Google Scholar 

  • Wiegel R. L. (1955): Laboratory studies of gravity waves generated by the movement of a submerged body. Trans. Am. Geophys. Union 36(5)

    Google Scholar 

  • Wiegel R. L., Noda E. K., Kuba E. M., et al. (1970): Water waves generated by landslides in reservoirs. J. Waterway. Harbour Coastal Eng., ASCE, 96 307–333

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). The Physics of Tsunami Formation by Sources of Nonseismic Origin. In: Physics of Tsunamis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8856-8_4

Download citation

Publish with us

Policies and ethics