Skip to main content

Size-Dependent Bending of Thin Metallic Films

  • Conference paper
IUTAM Symposium on Scaling in Solid Mechanics

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 10))

  • 1043 Accesses

Abstract

Size-dependent pure bending of thin metallic films has been analytically studied taking into account the associated strengthening mechanisms at different thickness scales. The classical plasticity theory is applicable to films thicker than 100 microns. Consequently, their bending capacity is governed by the competition between the material hardening and the thickness reduction. For films with a thickness ranging from fractions of a micron to a few microns, in addition to the above mechanisms, the strain gradient effect plays an important role and introduces an internal length scale. When the film thickness reduces to the nano-scale, the strain gradient effect is gradually replaced by the dominant surface stress/energy effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill R, The mathematical theory of plasticity, Clarendon Press, Oxford, 1950

    MATH  Google Scholar 

  2. Chen YZ, “Pure bending of a power-law-hardening infinite wide plat”, Acta Mech. Sinica,5, pp. 107–115, 1962.

    MathSciNet  Google Scholar 

  3. Triantaflyllidis N, “Bifurcation phenomena in pure bending”, J. Mech. Phys. Solids, 28, pp. 221–245, 1980.

    Google Scholar 

  4. Zhu HX, “Large deformation pure bending of an elastic plastic power-law strain hardening plate – analysis and application”, Int. J. Mech. Sci., 2007.

    Google Scholar 

  5. Aifantis EC, “The physics of plastic deformation”, Int. J. Plasticity, 3, pp. 211–247, 1987.

    Article  MATH  Google Scholar 

  6. Fleck NA, Hutchinson JW, “A phenomenological theory for strain gradient effects in sticity”, J. Mech. Phys. Solids, 41, pp. 1825–1857, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. Fleck NA, Muller GM, Ashby MF, Hutchinson JW, “Strain gradient plasticity: theory and experiment”, Acta Metall. Mater., 42, pp. 475–487, 1994.

    Article  Google Scholar 

  8. Nix WD, Gao H, “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, J. Mech. Phys. Solids, 46, pp. 411–425, 1998.

    Article  MATH  Google Scholar 

  9. Stolken JS, Evans AG, “A microbend test method for measuring the plasticity length scale”, Acta Mater., 46, pp. 5109–5115, 1998.

    Article  Google Scholar 

  10. Gao H, Huang Y, Nix WD, Hutchinson JW, “Mechanisim-based strain gradient plasticity – I. Theory”, J. Mech. Phys. Solids, 47, pp. 1239–1263, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang Y, Gao H, Nix WD, Hutchinson JW, “Mechanisim-based strain gradient plasticity – II. Analysis”, J. Mech. Phys. Solids, 48, pp. 99–128, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutchinson JW, “Plasticity at the micron scale”, Int. J. Solids Struct., 37, pp. 225–238, 2000.

    Google Scholar 

  13. Haque MA, Saif MTA, “Strain gradient effect in nanoscale thin films”, Acta Mater., 51, pp. 3053–3061, 2003.

    Article  Google Scholar 

  14. Huang Y, Qu S, Hwang KC, Li M, Gao H, “A conventional theory of mechanism-based strain gradient plasticity”, Int. J. Plast., 20, pp. 753–782, 2004.

    Article  MATH  Google Scholar 

  15. Lam DCC, Yang F, Chong ACM, Wang J, Tong P, “Experiments and theory in strain gradient elasticity”, J. Mech. Phys. Solids, 51, pp. 1477–1508, 2003.

    Article  MATH  Google Scholar 

  16. Wang W, Huang Y, Hsia KJ, Hu KX, Chandra A, “A study of microbend test by strain gradient plasticity”, Int. J. Plasticity, 19, pp. 365–382, 2003.

    Article  MATH  Google Scholar 

  17. Abu Al-Rub RK, Voyiadjis GZ, “A physically based gradient plasticity theory”, Int. J. Plasticity, 22, pp. 654–684, 2006.

    Article  MATH  Google Scholar 

  18. Miller RE, Shenoy VB, “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 11, pp. 139–147, 2000.

    Article  Google Scholar 

  19. He LH, Lim CW, Wu BS, “A continuum model for size-dependent deformation of elastic films of nano-scale thickness”, Int. J. Solids Struct., 41, pp. 847–857, 2004.

    Article  MATH  Google Scholar 

  20. Lim CW, He LH, “Size-dependent nonlinear response of thin elastic films with nano-scale thickness”, Int. J. Mech. Sci., 46, pp. 1715–1726, 2004.

    Article  MATH  Google Scholar 

  21. Cuenot S, Fretingny C, Demoustier-Champagne S, Nysten B, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy”, Phys. Rev. B, 69, 165410-1–165410-5, 2004.

    Article  Google Scholar 

  22. Zhou LG, Huang HC, “Are surface elastically softer or stiffer?”, Appl. Phys. Lett., 84, pp. 1940–1942, 2004.

    Article  Google Scholar 

  23. Duan HL, Wang J, Huang ZP, Karihaloo BL, “Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress”, J. Mech. Phys. Solids, 53, pp. 1574–1596, 2005a.

    Article  MathSciNet  Google Scholar 

  24. Duan HL, Wang J, Huang ZP, Karihaloo BL, “Eshelby formalism for nano-inhomogeneities”, Proc. R. Soc. A,461, pp. 3335–3353, 2005b.

    Google Scholar 

  25. Duan HL, Wang J, Karihaloo BL, Huang ZP, “Nanoporous materials can be made stiffer than non-porous counterparts by surface modification”, Acta Mater., 54, pp. 2983–2990, 2005c.

    Article  Google Scholar 

  26. Wang J, Duan HL, Huang ZP, Karihaloo BL, “A scaling law for properties of nano-structured materials”, Proc. R. Soc. A, 462, pp. 1355–1363, 2006.

    Article  MATH  Google Scholar 

  27. Cammarata RC, Sieradzki K, “Surface and interface stresses”, Annu. Rev. Mater. Sci., 24, pp. 215–234, 1994.

    Article  Google Scholar 

  28. Gall K, Diao J, Dunn ML, “The strength of gold nanowires”, Nano Lett., 4, pp. 2431–2436, 2004.

    Article  Google Scholar 

  29. Rubio-Bollinger G, Bahn SR, Agrait N, Jacobsen KW, Vieira, S, “Mechanical properties and formation mechanisms of a wire of single gold atoms”, Phys Rev. Lett., 87, 026101, 2001.

    Article  Google Scholar 

  30. Wu B, Heidelberg A, Boland JJ, “Mechanical properties of ultrahigh-strength gold nanowires”, Nat. Mater., 4, pp. 525–529, 2005.

    Article  Google Scholar 

  31. Warner DH, Sansoz F, Molinari JF, “Atomistic based continuum investigation of plastic deformation in nanocrystalline copper”, Int. J. Plast., 22, pp. 754–774, 2006.

    Article  MATH  Google Scholar 

  32. Lu L, Sui ML, LUK, “Superplastic extensibility of nanocrystalline copper at room temperature”, Science, 287, pp. 1463–1466, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zhu, H., Karihaloo, B. (2009). Size-Dependent Bending of Thin Metallic Films. In: Borodich, F. (eds) IUTAM Symposium on Scaling in Solid Mechanics. Iutam Bookseries, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9033-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9033-2_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9032-5

  • Online ISBN: 978-1-4020-9033-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics