Skip to main content

Genetically Modified Crops and Biological Control with Egg Parasitoids

  • Chapter
  • First Online:
Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma

Part of the book series: Progress in Biological Control ((PIBC,volume 9))

Abstract

Genetically-modified (GM) crops presently are central components of pest management strategies for several important crops worldwide. GM crops include insect-resistant varieties (expressing transgenes from the bacterium Bacillus thuringiensis, or from plant species other than the GM crop, though only the former varieties are commercially available), and herbicide-tolerant varieties (which tolerate post-emergent applications of particular herbicides). This chapter examines potential and known impacts of GM crops on egg parasitoids. Egg parasitoids can be affected by insect-active toxins or proteins produced by insect-resistant GM crops, or by herbicides applied to herbicide-tolerant crops. A review of the literature showed that very little research has addressed the impacts of GM crops on egg parasitoids, compared to the research on larval parasitoids or predatory insects. The amount and focus of research involving egg parasitoids, though, may be subject to existing factual prejudices: (i) the presence of toxins from insect-resistant varieties in herbivore eggs used as hosts by egg parasitoids is improbable, and (ii) the target of herbicide-tolerant varieties is weeds, by way of herbicide applications. However, egg parasitoids can be affected by GM crops through infrequently explored, direct or indirect pathways, such as exposure to GM crop toxins in honeydew or nectars, or pauperization of host populations in insect-resistant crops or of flowering plant communities in herbicide-tolerant crops. These pathways of GM crop effects on egg parasitoids are likely the most important, but have not been adequately addressed. A fuller understanding of any effects of GM crops on egg parasitoids is particularly significant in the context of analyses pointing to the importance of movement of natural enemy populations among crops and between seasons within a landscape, for pest management and biological control at regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson M (2007) Minnesota pest reports (16 Feb. 2007). Available at http://www.mda.state.mn.us/news/publications/pestsplants/insectsandpests/pestreport/2006summary.pdf. Accessed 23 April 2008

  • AgBios (2008) GM database. Available at http://www.agbios.com/dbase.php. Accessed 28 January 2008

  • Agrawal A, Klein CN (2000) What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by omnivores. J Animal Ecol 69:529–535

    Article  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric, Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Altieri MA, Gurr GM, Wratten SD (2004) Genetic engineering and ecological engineering: a clash of paradigms or scope for synergy. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: Advances in habitat manipulation for arthropods. Comstock Publishing Associates, Ithaca, NY, pp 13–31

    Google Scholar 

  • Álvarez-Alfageme F, Ferry N, Castañera P, Ortego F, Gatehouse AMR (2008) Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae). Transgenic Res 17:943–954

    Article  PubMed  Google Scholar 

  • Anderson PC, Broadbeck BV, Mizell RF (1989) Metabolism of aminoacids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca vitripennis. Entomologia Experimentalis et Applicatta 50:149–159

    Article  Google Scholar 

  • Anonymous (2001) Biopesticides registration action document for Bacillus thuringiensis (Bt) plant-incorporated protectants. U.S. Environmental Protection Agency, Office of Pesticide Programs, Biopesticides and Pollution Prevention Division (October 15, 2001), 27 p

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Co-evolution of animals and plants. University of Texas Press, Austin, TX, pp 100–140

    Google Scholar 

  • Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 117–141

    Google Scholar 

  • Begum M, Gurr GM, Wratten SD (2004) Flower color affects tri-trophic biocontrol interactions. Biological Control 30:584–590

    Article  Google Scholar 

  • Bell HA, Kirkbride-Smith AE, Marris GC, Edwards JP, Gatehouse AMR (2004) Oral toxicity and impact on fecundity of three insecticidal proteins on the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera:Eulophidae). Agric For Entomol 6:215–222

    Article  Google Scholar 

  • Benbrook CM (2004) Genetically engineered crops and pesticide use in the United States: The first nine years. BioTech InfoNet, Technical Paper Number 7, 38 p

    Google Scholar 

  • Bernal CC, Aguda RM, Cohen MB (2002) Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomol Exp Appl 102:21–28

    Article  Google Scholar 

  • Bernal JS, Sétamou M (2003) Fortuitous antixenosis in transgenic sugarcane: antibiosis-expressing cultivar deters oviposition by herbivore pests. Environ Entomol 32:886–894

    Article  Google Scholar 

  • Bernal JS, Prasifka J, Sétamou M, Heinz KM (2004) Transgenic insecticidal cultivars in integrated pest management: challenges and opportunities. In: Koul O, Dhaliwal GS, Cuperus GW (eds) Integrated pest management: Potential, constraints and challenges. CABI, Oxfordshire, pp 123–145

    Chapter  Google Scholar 

  • Bhatti MA, Duan J, Head GP, Jiang C, McKee M, Nickson TE, Pilcher CL, Pilcher CD (2005) Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods. Environ Entomol 34:1336–1345

    Article  Google Scholar 

  • Carter C, Graham RA, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  • Colazza S, Fucarino A, Peril E, Salerno G, Conti E, Bin F (2004) Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. J Exp Biol 207:47–53

    Article  PubMed  Google Scholar 

  • Da Rocha L, Kolberg R, Mendonça M De S, Jr Redaelli LR (2007) Body size variation in Gryon gallardoi related to age and size of the host. BioControl 52:161–173

    Article  Google Scholar 

  • Degenhardt J, Gershenzonz J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dobson HEM (1988) Survey of pollen and pollenkit lipids: chemical cues to flower visitors? Am J Botany 75:170–182

    Article  CAS  Google Scholar 

  • Eizaguirre M, Albajes R, López C, Eras J, Lumbierres B, Pons X (2006) Six years after the commercial introduction of Bt maize in Spain: field evaluation, impact and future prospects. Transgenic Res 15:1–12

    Article  PubMed  CAS  Google Scholar 

  • Eubanks MD, Styrsky JD (2005) The effects of plant feeding on the performance of omnivorous ‘predators’. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 148–177

    Google Scholar 

  • Faria CA, Wäckers FL, Turlings TCJ (2007) Increased susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. PlosOne 2:1–11

    Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Fearing PL, Brown D, Vlachos D, Meghji M, Privalle L (1997) Quantitative analysis of CryIA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Mol Breed 3:169–176

    Article  CAS  Google Scholar 

  • Fernandes OA, Faria M, Martinelli S, Schmidt F, Carvalho VF, Moro G (2007) Short-term assessment of Bt maize on non-target arthropods in Brazil. Sci Agric 64:249–255

    Article  Google Scholar 

  • Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target beetles. Transgenic Res 16:795–812

    Article  PubMed  CAS  Google Scholar 

  • Fox CW (1993) The influence of maternal age and mating frequency on egg size and offspring performance in Callosobruchus maculatus (Coleoptera: Bruchidae). Oecologia 96:139–146

    Article  Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369

    Article  PubMed  CAS  Google Scholar 

  • Fuchsberg JR, Yong TH, Losey JE, Carter ME, Hoffmann AA (2007) Evaluation of corn leaf aphid (Rhopalosiphum maidis; Homoptera: Aphididae) honeydew as a food source for the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biol Control 40:230–236

    Article  Google Scholar 

  • Gatehouse AMR (1999) Biotechnological applications of plant genes in the production of insect-resistant crops. In: Clement SL, Quisenberry SS (eds) Global plant genetic resources for insect-resistant crops. CRC Press, BocaRaton, pp 263–280

    Google Scholar 

  • Geng J, Shen Z, Song K, Zheng L (2006) Effect of pollen of regular cotton and transgenic Bt+CpTI cotton on the survival and reproduction of the parasitoid wasp Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in the laboratory. Environ Entomol 35:1661–1668

    Article  Google Scholar 

  • Giolo FP, Grutzmacher AD, Procopio SO, Manzoni CG, Lima CAB, Nornberg SD (2005a) Side-effects of glyphosate formulations on Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Planta Daninha 23:457–462

    Article  Google Scholar 

  • Giolo FP, Grutzmacher AD, Manzoni CG, Fachinello JC, Nornberg SD, Stefanello GJ Jr (2005b) Side-effects of pesticides used in integrated production of peach on Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae). Revista Brasileira de Fruticultura 27:222–225

    Article  Google Scholar 

  • Giolo FP, Grutzmacher AD, Manzoni CG, De Lima CAB, Noernberg SD (2007a) Toxicity of pesticides used in peach orchard on adults Trichogramma pretiosum. Bragantia 66:423–431

    Article  CAS  Google Scholar 

  • Giolo FP, Grutzmacher AD, Manzoni CG, Harter WR, Castilhos RV, Muller C (2007b) Toxicity of pesticides used in peach production on the egg parasitoid Trichogramma atopovirilia Oatman and Platner, 1983 (Hymenoptera: Trichogrammatidae). Ciencia Rural 37:308–314

    Article  CAS  Google Scholar 

  • Gonzalez D (1971) Sampling as a basis for pest management strategies. In: Proceedings of the Tall Timbers Conference on Ecological Animal Control by Habitat Management. Tall Timbers Research Station, Tallahassee, USA, pp 83–101

    Google Scholar 

  • Gordh G, Legner EF, Caltagirone, LE (1999) Biology of parasitic Hymenoptera. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, CA, pp 355–381

    Chapter  Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    Article  PubMed  CAS  Google Scholar 

  • Gurr GM, van Emden HF, Wratten SD (1998) Habitat manipulation and natural enemy efficiency: implications for the control of pests. In: Barbosa P (ed) Conservation biological control. Academic, UK, pp 155–183

    Chapter  Google Scholar 

  • Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116

    Article  Google Scholar 

  • Hare JD (2002) Plant genetic variation in tritrophic interactions. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 8–43

    Chapter  Google Scholar 

  • Hawes C, Haughton AJ , Osborne JL, Roy DB, Clark SJ, Perry JN, Rothery P, Bohan DA, Brooks DR, Champion GT, Dewar MS, Heard MS, Woiwod IP, Daniels RE, Young MW, Parish AM, Scott RJ, Firbank LG, Squire GR (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lan B Biol Sci 358:1899–1913

    Article  CAS  Google Scholar 

  • Head G, Brown CR, Groth M, Duan JJ (2001) Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomol Exp Appl 99:37–45

    Article  CAS  Google Scholar 

  • Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  • Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins – how specific are they and what else might they do? Biopestic Int 2:1–50

    Google Scholar 

  • Irvin NA, Hoddle MS, Castle SJ (2007) The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biol Control 40:69–79

    Article  Google Scholar 

  • James C (2007) Global status of Commercialized biotech/GM Crops: 2007. ISAAA Brief, No. 37. ISAAA: Ithaca, NY

    Google Scholar 

  • Jervis MA, Kidd NAC, Heimpel GE (1996) Parasitoid adult feeding behavior and biocontrol – a review. Biocontrol News Inf 17:11 N–26 N

    Google Scholar 

  • Jouanin L, Girard C, Bonadé-Bottino M, Le Metayer M, Picard Nizou A, Lerin J, Pham-Delègue M (1998) Impact of oilseed rape expressing proteinase inhibitors on coleopteran pests and honeybees. Cahiers Agric 7:531–536

    Google Scholar 

  • Kareiva P (1990) The spatial dimension in pest-enemy interactions. In: Mackauer M, Ehler L and Roland J (eds), Critical issues in biological control. Intercept Press, Andover, UK, pp 213–226

    Google Scholar 

  • Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep 20:976–981

    Article  CAS  Google Scholar 

  • Keller MA, Lewis WJ, Stinner RE (1985) Biological and practical significance of movement by Trichogramma species: a review. Southwest Entomol 8:138–155

    Google Scholar 

  • Knesevic SZ, Cassman KG (2003) Use of herbicide-tolerant crops as a component of an integrated weed management program. Crop Manage J (online http://www.plantmanagementnetwork.org/pub/cm/management/2003/htc/)

  • Koptur S (2005) Nectar as fuel for plant protectors. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 75–108

    Chapter  Google Scholar 

  • Kozeil MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  PubMed  CAS  Google Scholar 

  • Losey JE, Calvin DD, Carter ME, Mason CE (2001) Evaluation of noncorn host plants as a refuge in a resistance management program for European corn borer (Lepidoptera: Crambidae) on Bt-corn. Environ Entomol 30:728–735

    Article  Google Scholar 

  • Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Appl 114:1–14

    Article  Google Scholar 

  • Lumbierres B, Albajes R, Pons X (2004) Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance. Ecol Entomol 29:309–317

    Article  Google Scholar 

  • Malone LA (2002) Literature review on genetically modified plants and bee products. MAF Technical Paper No: 2002/05

    Google Scholar 

  • Malone LA, Pham-Delègue M (2002) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304

    Article  Google Scholar 

  • Manachini B, Lozzia GC (2004) Studies on the effects of Bt corn expressing Cry1Ab on two parasitoids of Ostrinia nubilalis Hb. (Lepidoptera: Crambidae). Bulletin OILB/SROP - WPRS/SROP 27:109–116

    Google Scholar 

  • Mansfield S, Dillon L, Whitehouse MEA (2006) Are arthropod communities in cotton really disrupted? An assessment of insecticide regimes and evaluation of the beneficial disruption index. Agric Ecosyst Environ 113:326–335

    Article  CAS  Google Scholar 

  • Manzoni CG, Grutzmacher AD, Giolo FP, Harter WR, Muller C (2006) Side effects of pesticides used in integrated production of apple in adults of Trichogramma pretiosum. Pesquisa Agropecuaria Brasileira 41:1461–1467

    Article  Google Scholar 

  • McDougall SJ, Mills NJ (1997) The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomol Exp Appl 83:195–203

    Article  Google Scholar 

  • Moreau J, Benrey B, Thiery D (2006) Assessing larval food quality for phytophagous insects: are the facts as simple as they appear? Funct Ecol 20:592–600

    Article  Google Scholar 

  • Moreau J, Thiery D, Troussard JP, Benrey B (2007) Grape variety affects female but also male reproductive success in wild European grapevine moths. Ecol Entomol 32:747–753

    Article  Google Scholar 

  • Nepi M, Franchi GG (2000) Cytochemistry of mature angiosperm pollen. In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer, Vienna, pp 45–62

    Chapter  Google Scholar 

  • Nicholls CI, Altieri MA (2004) Agroecological bases of ecological engineering for pest management. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: Advances in habitat manipulation for arthropods. Comstock Publishing Associates, Ithaca, pp 33–54

    Google Scholar 

  • Obrycki JJ, Ruberson JR, Losey JE (2004) Interactions between natural enemies and transgenic insecticidal crops. In: Ehler LE, Sforza R, Mateille T (eds) Genetics, evolution, and biological control. CAB International, Oxon, UK, pp 183–206

    Chapter  Google Scholar 

  • Orr DB, Landis DA (1997) Oviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. J Econ Entomol 90:905–909

    Google Scholar 

  • Peumans WJ, Smeets K, van Nerum K, van Leuven F, van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  • Picard-Nizou AL, Kerguelen V, Douault P, Marilleau R, Blight M, Jouanin L, Renard M, Pham-Delègue M (1993) Contribution to the study of honey bee-transgenic oilseed rape interactions. Apidologie 24:457–459

    Google Scholar 

  • Picard-Nizou AL, Pham-Delègue M, Kerguelen V, Douault P, Marilleau R, Olsen L, Grison R, Toppan A, Masson C (1995) Foraging behavior of honey bees (Apis mellifera L.) on transgenic oilseed rape (Brassica napus L. var. oleifera). Transgenic Res 4:270–276

    Article  CAS  Google Scholar 

  • Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:257–268

    Article  Google Scholar 

  • Rahat R, Gurr GM, Wratten SD, Mo J, Neeson R (2005) Effect of plant nectars on adult longevity of the stinkbug parasitoid, Trissolcus basalis. Int J Pest Manage 51:321–324

    Article  Google Scholar 

  • Raps A, Kehr J, Gugerli P, Moar WJ, Bigler F, Hilbeck A (2001) Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the non target herbivore Rhopalosiphum padi (Homoptera: Aphididae) for presence of Cry1Ab. Mol Ecol 10:525–534

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Babendreier D, Wäckers FL (2003) Consumption of snowdrop lectin (Galanthus nivalis agglutinin) causes direct effects on adult parasitic wasps. Oecologia 134:528–536

    PubMed  Google Scholar 

  • Romeis J, Babendreier D, Wäckers FL, Shanower TG (2005) Habitat and plant specificity of Trichogramma egg parasitoids - underlying mechanisms and implications. Basic Appl Ecol 6:215–236

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer, Vienna, pp 187–211

    Chapter  Google Scholar 

  • Roy DB, Bohan DA, Haughton AJ, Hill MO, Osborne JL, Clark SJ, Perry JN, Rothery P, Scott RJ, Brooks DR, Champion GT, Hawes C, Heard MS, Firbank LG (2003) Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lan B Biol Sci 358:1879–1898

    Article  CAS  Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding CryIA insecticidal proteins in cotton. Crop Sci 38:1–11

    Article  CAS  Google Scholar 

  • Schüler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16:168–175

    Article  Google Scholar 

  • Schmidt MH, Thies C, Tscharntke T (2004) Landscape context of biological control. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: Advances in habitat manipulation for arthropods. Comstock, Ithaca, NY, pp 55–63

    Google Scholar 

  • Senthil Nathan S, Kalaivani K, Mankin RW, Murugan K (2006) Effects of millet, rice, and sorghum diets on development of Corcyra cephalonica (Stainton) (Lepidoptera: Galleriidae) and its suitability as a host for Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Environ Entomol 35:784–788

    Article  Google Scholar 

  • Sétamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi B (2002) Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): effects on life history parameters and damage. J Econ Entomol 95:469–477

    Article  PubMed  Google Scholar 

  • Shi Y, Wang MB, Powell KS, van Damme E, Hilder VA, Gatehouse AMR, Boulter D, Gatehouse JA (1994) Use of the rice sucrose synthase-1 promotor to direct phloem-specific expression of β-glucuronidase and snow drop lectin genes in transgenic tobacco plants. J Exp Botany 45:623–631

    Article  CAS  Google Scholar 

  • Solberg Y, Remedios G (1980) Chemical composition of pure and bee-collected pollen. Medlinger fra Norges Landbruksshoegskole 59:2–12

    Google Scholar 

  • Spitzen J, van Huis A (2005) Effect of host quality of Callosobruchus maculates (Coleoptera: Bruchidae) on performance of the egg parasitoid Uscana lariophaga (Hymenoptera: Trichogrammatidae). Bull Entomol Res 95:341–347

    Article  PubMed  CAS  Google Scholar 

  • Tesoriero D, Sgolastra F, Dall’Asta S, Venier F, Sabatini A, Burgio G, Porrini C(2004) Effects of Bt-oilseed rape on the foraging activities of honey bees in confined environment. Redia 87:195–198

    Google Scholar 

  • Treacy MF, Benedict JH, Walmsley MH, Lopez JD, Morrison RK (1987) Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton. Environ Entomol 16:420–423

    Google Scholar 

  • Tscharntke T (2000) Parasitoid populations in the agricultural landscape. In: Hochberg ME, Ives AR (eds) Parasitoid population biology. Princeton University Press, Princeton, NY, pp 235–253

    Google Scholar 

  • van Huis A, Rooy Mde (1998) The effect of leguminous plant species on Callosobruchus maculates (Coleoptera: Bruchidae) and its egg parasitoid Uscana lariophaga (Hymenoptera: Trichogrammatidae). Bull Entomol Res 88:93–99

    Article  Google Scholar 

  • Wäckers FL (2005) Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 17–74

    Chapter  Google Scholar 

  • Wäckers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: Making the best of a bad meal? Biol Control 45:176–184

    Article  Google Scholar 

  • Wang Z, Wu Y, He K, Bai S (2007) Effects of transgenic Bt maize pollen on longevity and fecundity of Trichogramma ostriniae in laboratory conditions. Bull Insectol 60:49–55

    Google Scholar 

  • Wellinga S, Wysoki M (1989) Preliminary investigation of food source preferences of the parasitoid Trichogramma platneri Nagarkatti (Hymenoptera, Trichogrammatidae). Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 62:133–135

    Article  Google Scholar 

  • Whitehouse MEA, Wilson LJ, Fitt GP (2005) A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ Entomol 34:1224–1231

    Article  Google Scholar 

  • Whitehouse MEA, Wilson LJ, Constable GA (2007) Target and non-target effects on the invertebrate community of Vip cotton, a new insecticidal transgenic. Aust J Agric Res 58:273–285

    Article  CAS  Google Scholar 

  • Yang YZ, Yu YS, Ren L, Shao YD, QianK, Zalucki MP (2005) Possible incompatibility between transgenic cottons and parasitoids. Aust J Entomol 44:442–445

    Article  Google Scholar 

  • Zhang GR, Zimmermann O, Hassan SA (2004) Pollen as a source of food for egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae). Biocontrol Sci Technol 14:201–209

    Article  Google Scholar 

  • Zimmermann O, Ren Z, Hassan SA (2004) Risk assessment of culturing transgenic crops: testing side effects of Bt corn on Microhymenoptera of the genus Trichogramma (Hym., Trichogrammatidae). Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 14:431–434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio S. Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bernal, J.S. (2009). Genetically Modified Crops and Biological Control with Egg Parasitoids. In: Consoli, F., Parra, J., Zucchi, R. (eds) Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma . Progress in Biological Control, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9110-0_17

Download citation

Publish with us

Policies and ethics