Skip to main content

Antiadiabatic State – Ground State Of Superconductors: Study Of Ybco

  • Conference paper
Electron Transport in Nanosystems

It has been shown that el-ph coupling to Ag, B2g and B3g modes in Y Ba2Cu3O7 induces T-dependent electronic structure instability which is related to fluctuation of analytic critical point of (d-pσ) band across Fermi level. It results in considerable reduction of chemical potential and to breakdown of the Born-Oppenheimer approximation. At critical temperature Tc, superconducting system undergoes transition from adiabatic electronic ground state into anti-adiabatic state at broken symmetry that is stabilized due to the effect of nuclear dynamics. This effect is absent in non-superconducting YBa2Cu3O6. Formation of asymmetric gaps in a and b direction of Y Ba2Cu3O7 has been shown. In a good agreement with experimental Tc of superconducting state transition, critical temperature has been calculated - Tc ≈ 92.8 K. Present study has also revealed that in c direction there should be identified the next gap that is considerably smaller than gaps in a, b directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Lanzara, P.V. Bogdanov, X.J. Zhou et al., Nature 412, 510 (2001)

    Article  ADS  Google Scholar 

  2. X.J. Zhou, T. Yoshida, A. Lanzara et al., Nature 423, 398 (2003)

    Article  ADS  Google Scholar 

  3. T. Takahashi, T. Sato, H. Matsui and K. Terashima, New J. Phys. 7, 105 (2005)

    Article  ADS  Google Scholar 

  4. J.M. An and W.E. Picket, Phys. Rev. Lett. 86, 4366 (2001)

    Article  ADS  Google Scholar 

  5. T. Yilderim, O. Gulseren, J.W. Lynn et al., Phys. Rev. Lett. 87, 037001 (2001)

    Article  ADS  Google Scholar 

  6. P. Banacky, Int. J. Quant. Chem. 101, 131 (2005)

    Article  Google Scholar 

  7. L. Boeri, E. Cappelluti and L. Pietronero, Phys. Rev. B 71, 012501 (2005)

    Article  ADS  Google Scholar 

  8. M. Svrcek, P. Banacky and A. Zajac, Int. J. Quant.Chem. a/43, 393 (1992); b/43, 415 (1992); c/43, 425 (1992); d/43, 551 (1992) P. Banacky, Phys. Rev. B, submitted (August 2006)

    Article  Google Scholar 

  9. C.W. Chu, P.H. Hor, R.L. Meng et al., Phys. Rev. Lett. 58, 405 (1987)

    Article  ADS  Google Scholar 

  10. Y. Muto, N. Kobayashi and Y. Syono, in Novel Superconductivity (editors S. Wolf and V. Kresin, Plenum Press, New York (1987)

    Google Scholar 

  11. SOLID 2000, Computer code for electronic structure calculation of periodic systems. S-Tech a.s., Bratislava, Slovakia (www.stech.sk)

  12. J. Noga, P. Baňacký, S. Biskupič et al., J. Comp. Chem. 20, 253 (1999)

    Article  Google Scholar 

  13. J.A. Pople, D.L. Beveridge and P.A. Dobosh, J. Chem. Phys. 47, 2026 (1967)

    Article  ADS  Google Scholar 

  14. J.A. Pople and D.L. Beveridge, in Approximate Molecular Orbital Theory, (McGraw-Hill, New York, 1970)

    Google Scholar 

  15. A. Zajac, P. Pelikán, J. Noga et al., J. Phys. Chem. B 104, 1708 (2000)

    Article  Google Scholar 

  16. A. Zajac, P. Pelikán, J. Minar et al., J. Solid. State Chem. 150, 286 (2000)

    Article  ADS  Google Scholar 

  17. P. Pelikán, M. Kosuth, S. Biskupič et al., Int. J. Quant. Chem. 84, 157 (2001)

    Article  Google Scholar 

  18. Picket, W.E. Rev. Mod. Phys. 61, 433 (1989)

    Article  ADS  Google Scholar 

  19. W.E. Picket, R.E. Cohen and H.A. Krakauer, Phys. Rev. B 42, 8764 (1990)

    Article  ADS  Google Scholar 

  20. O.K. Andersen, O. Jepsen, A.I. Liechtenstein and I.I. Mazin, Phys. Rev. B 49, 4145 (1994)

    Article  ADS  Google Scholar 

  21. R. Kouba, C. Ambrosch-Draxl and B. Zangger, Phys. Rev. B 60, 9321 (1999)

    Article  ADS  Google Scholar 

  22. D.H. Lu, D.L. Feng, N.P. Armitage et al., Phys. Rev. Lett. 86, 4370 (2001)

    Article  ADS  Google Scholar 

  23. A. Damascelli, Z. Hussain and Z.x. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  24. W. Weber and L.F. Mattheiss, Phys. Rev. B 37, 599 (1988)

    Article  ADS  Google Scholar 

  25. P.B. Allen, W.E. Picket and H. Krakauer, Phys. Rev. B 37, 7482 (1988)

    Article  ADS  Google Scholar 

  26. R.E. Cohen, W.E. Picket and H. Krakauer, Phys. Rev. Lett. 64, 2575 (1990)

    Article  ADS  Google Scholar 

  27. J.H. Chung, T. Egami, R.J. McQuinney et al., Phys. Rev. B 67, 014517 (2003)

    Article  ADS  Google Scholar 

  28. R. Lin, C. Thomsen, W. Kress et al., Phys. Rev.B 37, 7971 (1988)

    Article  ADS  Google Scholar 

  29. K.F. McCarty, J.Z. Lin, R.N. Shelton and M.B. Radomsky, Phys. Rev. B 41, 8792 (1990)

    Article  ADS  Google Scholar 

  30. J.E. Hirsh and D.J. Scalapino, Phys. Rev. Lett. 56, 2735 (1986)

    ADS  Google Scholar 

  31. J. Labbe and J. Bok, Europhys. Lett. 3, 1225 (1987)

    Article  ADS  Google Scholar 

  32. C.C. Tsuei, C.C. Chi, D.M. Newns, Phys. Rev. Lett. 69, 2134 (1992)

    Article  ADS  Google Scholar 

  33. D.M. Newns, H.R. Krishnamurthy, P.C. Pattnaik, Phys. Rev. Lett. 69, 1264 (1992)

    Article  ADS  Google Scholar 

  34. P.C. Pattnaik, C.L. Kane, D.M. Newns, Phys. Rev. B 145, 5714 (1992)

    Article  ADS  Google Scholar 

  35. K. Gofron, J.C. Campuzano, A.A. Abrikosov et al., Phys. Rev. Lett. 73, 3302 (1994)

    Article  ADS  Google Scholar 

  36. G. Zhao, M.B. Hunt, H. Kellerand K.A. Muller, Nature (London) 385, 236 (1997)

    Article  ADS  Google Scholar 

  37. J.P. Franck, in Physical Properties of High Temperature superconductors IV, edited by D. Ginsberg (World Scientific, Singapore, 1994)

    Google Scholar 

  38. A.S. Alexandrov, Phys. Rev. B 61, 12315 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. BaŇAckÝ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

BaŇAckÝ, P. (2008). Antiadiabatic State – Ground State Of Superconductors: Study Of Ybco. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_15

Download citation

Publish with us

Policies and ethics