Skip to main content

Leaf C4 Photosynthesis in silico: The CO2 Concentrating Mechanism

  • Chapter
Photosynthesis in silico

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 29))

A computer model comprised of light reactions in PS II and PS I, electron—proton transport reactions in mesophyll and bundle sheath (BS) chloroplasts, all enzymatic reactions, and most of the known regulatory functions of NADP-malic enzyme type C4 photosynthesis, has been developed as a system of differential budget equations for intermediate compounds. Rate-equations were designed on principles of multisubstrate-multiproduct enzyme kinetics. The model provided good simulations for rates of photosynthesis and pool sizes of intermediates under varying light, CO2 and O2. A principle novelty of the model for NADP-ME type species is the hypothesis that electrons transported into the BS chloro-plasts via the malate shuttle enter the electron transport chain with the help of NAD(P)H-plastoquinone oxyreductase (NDH, or an enzyme of similar function). In the model, the electrons from reduced plastoquinone pass through the Q-cycle and photosystem I (PS I) only once, without cycling around PS I, as commonly assumed. With this the ratio of 2 ATP/NADPH, satisfying the energy requirements process, is fixed, provided that 2 H+/e are transported by the Q-cycle and 2 H+/e by NDH, and 4 H+are utilized per ATP generated. The hypothesis is based on modeling results showing that there must be fine control of the ATP/NADPH ratio in BS chloroplasts for optimum function of C4 photosynthesis. The CO2 concentrating function of NADP-ME type C4 photosynthesis, which occurs as the rate of the C4 cycle exceeds the rate of CO2 assimilation in BS cells (overcycling), can be explained on the basis of two processes. First, alternative consumption of some ATP in BS chloroplasts to support other processes (e.g. starch and protein synthesis) reduces the ATP/NADPH ratio available in BS. As a result, some CO2 imported into BS remains unassimilated and accumulates, resulting in overcycling back to the mesophyll. Second, the residual photorespiratory activity alternatively consumes some ribulose 1,5-bisphosphate for oxygenation; as with the alternative consumption of ATP, some CO2 imported into BS remains unassimilated and accumulates, causing overcycling. The CO2 evolved from photorespiration in BS also contributes to the CO2 pump in C4 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson LE, Gatla N and Carol AA (2005) Enzyme co-localization in pea chloroplasts: glyceraldehyde-3-P dehy-drogenase, triose-P isomerase, aldolase and seduheptulose bisphosphatase. Photosynth Res. 83: 317–328

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184: 10–21

    PubMed  CAS  Google Scholar 

  • Arnon DI and Chain RK (1975) Regulation of ferredoxin-catalyzed photosynthetic phophorylation. Proc Natl Acad Sci USA 72: 4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI and Chain RK (1979) Regulatory electron transport pathways in cyclic photophosphorylation. FEBS Lett 102: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Whatley FR and Allen MB (1958) Assimilatory power in photosynthesis. Science 127: 1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE and Kramer DM (2005) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28: 97–109

    Article  CAS  Google Scholar 

  • Berry J and Farquhar GD (1978) The CO2 concentration function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J and Goodwin T (eds) Proceedings of the 4th International Congress on Photosynthesis, pp 119– 131. Biochemical Society, London

    Google Scholar 

  • Campbell WJ and Ogren WL (1990) Electron transport through photosystem I stimulates light activation of ribu-lose bisphosphate carboxylase/oxygenase (Rubisco) by rubisco activase. Plant Physiol 94: 479–484

    Article  PubMed  CAS  Google Scholar 

  • Campbell WJ and Ogren WL (1992) Light activation of Rubisco by Rubisco activase and thylakoid membranes. Plant Cell Physiol 33: 751–756

    CAS  Google Scholar 

  • Canvin DT, Berry JA, Badger MR, Fock H and Osmond B (1980) Oxygen exchange in leaves in the light. Plant Physiol 66: 302–307

    Article  PubMed  CAS  Google Scholar 

  • Cassan N, Lagouette B and Setif P (2005) Ferredoxin-NADP+ reductase. Kinetics of electron transfer, transient intermediates, and catalytic activities studied by flashabsorption spectroscopy with isolated photosystem I and ferredoxin. J Biol Chem 280: 25960–25972

    Article  PubMed  CAS  Google Scholar 

  • Clarke JE and Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212: 808–816

    Article  PubMed  CAS  Google Scholar 

  • Collatz GJ, Ribas-Carbo M and Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19: 519–538

    Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A and Kramer DM (2001) Contribution of electric field (▵ψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ▵ψ and ▵pH by ionic strength. Biochemistry 40: 1226–1237

    Article  PubMed  CAS  Google Scholar 

  • Cseh Z, Vianelli A, Rajagopal S, Krumova S, Kovacs L, Papp E, Barzda V, Jennings R and Garab G (2005) Thermo-optically induced reorganizations in the main light harvesting antenna of plants. I. Non-Arrhenius type temperature dependence and linear light-intensity dependencies. Photosynth Res 86: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Dilley RA (1991) Energy coupling in chloroplasts: a calcium-gated switch controls proton fluxes between localized and delocalized proton gradients. Current Topics in Bioenergetics 16: 265–317

    CAS  Google Scholar 

  • Doncaster HD and Leegood RC (1987) Regulation of phos-phoenolpyruvate carboxylase activity in maize leaves. Plant Physiol 84: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Edwards GE (1986) Carbon fixation and partitioning in the leaf. In: Shannon JC, Knievel DP and Boyer CD (eds) Regulation of Carbon and Nitrogen Reduction and Utilization in Maize, pp 51–65. Waverly Press, Baltimore, MD

    Google Scholar 

  • Edwards GE and Ku MSB (1987) The biochemistry of C3–C4 intermediates. In: Hatch MD and Boardman NK (eds) The Biochemistry of Plants, pp 275–325. Academic, New York

    Google Scholar 

  • Edwards GE and Voznesenskaya E (2009) C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra A and Sage RF (eds) Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Springer, Dordrecht, in press

    Google Scholar 

  • Edwards GE and Walker DA (1983) C3,C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis. Blackwell, Oxford/London

    Google Scholar 

  • Eichelmann H and Laisk A (1999) Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimi-latory charge and mesophyll conductance in leaves. Plant Physiol 119: 179–189

    Article  PubMed  CAS  Google Scholar 

  • Eichelmann H, Talts E, Oja V, Rasulov B, Padu E and Laisk A (2008) Rubisco activity is is related to photosystem I in leaves. In: Allen JF, Gantt E, Golbeck JH and Osmond B (eds) Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis, pp 853–856. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Farquhar GD, Von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Furbank RT and Badger MR (1982) Photosynthetic oxygen exchange in attached leaves of C4 monocotyledons. Aust J Plant Physiol 9: 553–558

    CAS  Google Scholar 

  • Furbank RT, Stitt M and Foyer CH (1985) Intercellular com-partmentation of sucrose synthesis in leaves of Zea mays L. Planta 164: 172–178

    Article  CAS  Google Scholar 

  • Furbank RT, Jenkins CLD and Hatch MD (1989) CO2 concentrating mechanism of C4 photosynthesis. Plant Physiol 91: 1364–1371

    Article  PubMed  CAS  Google Scholar 

  • Gao Y and Woo KC (1996) Regulation of phosphoenolpyru-vate carboxylase in Zea mays by protein phosphorylation and metabolites and their roles in photosynthesis. Aust J Plant Physiol 23: 25–32

    CAS  Google Scholar 

  • Gerst U, Schönknecht G and Heber U (1994) ATP and NADPH as the driving force of carbon reduction in leaves in relation to thylakoid energization by light. Planta 193: 421–429

    Article  CAS  Google Scholar 

  • Golbeck JH (1987) Structure, function and organization of the photosystem I reaction center complex. Biochim Bio-phys Acta 895: 167–204

    CAS  Google Scholar 

  • Golding AJ and Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G and Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reduc-tants — evidence for activation of cyclic electron transport upon dark adaptation under drought. Planta 220: 356–363

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895: 81–106

    CAS  Google Scholar 

  • He D and Edwards G (1996) Estimation of diffusive resistance of bundle sheath cells to CO2 from modeling of C4 photosynthesis. Photosynth Res 49: 195–208

    Article  CAS  Google Scholar 

  • Henderson SA, Von Caemmerer S and Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19: 263–285

    CAS  Google Scholar 

  • Hosler JP and Yocum CF (1985) Evidence for two cyclic photophosphorylation reactions concurrent with ferredoxin-catalyzed non-cyclic electron transport. Biochim Biophys Acta 808: 21–31

    Article  CAS  Google Scholar 

  • Hosler JP and Yocum CF (1987) Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport. Effect of DCMU and the NADPH/NADP+ ratio. Plant Physiol 83: 965–969

    Article  PubMed  CAS  Google Scholar 

  • Huber JL, Hite DRC, Outlaw WH Jr and Huber SC (1991) Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation. Plant Physiol 95: 291–297

    Article  PubMed  CAS  Google Scholar 

  • Ivanov B, Asada K and Edwards GE (2007) Analysis of donors of electrons to photosystem I and cyclic electron flow by redox kinetics of 700 in chloroplasts of isolated bundle sheath strands of maize. Photosynth Res 92: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Jiao JA and Chollet R (1988) Light/dark regulation of maize leaf phosphoenolpyruvate carboxylase by in vivo phos-phorylation. Arch Biochem Biophys 261: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Johnson G (2003) Thiol regulation of the thylakoid electron transport chain — a missing link in the regulation of photosynthesis. Biochemistry 42: 3040–3044

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Edwards EE (1999) The biochemistry of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 49–87. Academic Press, NewYork

    Chapter  Google Scholar 

  • Kanazawa A and Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99: 12789–12794

    Article  PubMed  CAS  Google Scholar 

  • Keleti T (1990) Coupled reactions and channelling: their role in the control of metabolism. In: Cornish-Bowden A and Càrdenas ML (eds) Control of Metabolic Processes, pp 259–270. Plenum Press, New York

    Google Scholar 

  • Kiirats O, Lea PJ, Franceschi VR and Edwards GE (2002) Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiol 130: 964–976

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff H, Schöttler MA and Maurer JWE (2004) Plas-tocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain. Biochim Biophys Acta 1659: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C and Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+ -absorbance changes at 830 nm. Planta 192: 261–268

    Article  CAS  Google Scholar 

  • Kramer DM, Avenson TJ and Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB and Edwards GE (1975) Photosynthesis in mesophyll protoplasts and bundle sheath cells of various type of C4 plants. IV. Enzymes of respiratory metabolism and energy utilizing enzymes of photosynthetic pathways. Z. Pflanzenphysiol 77: 16–32

    CAS  Google Scholar 

  • Kubasek J, Setlik J, Dwyer S and Santrucek J (2007) Light and temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C4 grasses and dicots. Photosynth Res 91: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Kubicki A, Funk E, Westhoff P and Steinmüller K (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle sheath chloroplasts of the C4 plant Sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199: 276–281

    Article  CAS  Google Scholar 

  • Laisk A (1970) A model of leaf photosynthesis and photorespiration. In: Shetlik I (ed) Prediction and Measurement of Photosynthetic Productivity, pp 295–306. PUDOC, Wageningen

    Google Scholar 

  • Laisk A (1993) Mathematical modeling of free-pool and channeled electron transport in photosynthesis: evidence for a functional supercomplex around photosystem I. Proc R Soc Lond B 251: 243–251

    Article  CAS  Google Scholar 

  • Laisk A and Edwards GE (1997) CO2 and temperature-related induction of photosynthesis in C4 plants: an approach to the hierarchy of rate-limiting processes. Aust J Plant Physiol 24: 505–516

    Article  CAS  Google Scholar 

  • Laisk A and Edwards GE (1998) Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in bundle sheath. Planta 205: 632–645

    Article  CAS  Google Scholar 

  • Laisk A and Edwards GE (2000) A mathematical model of C4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66: 199–224

    Article  PubMed  CAS  Google Scholar 

  • Laisk A and Oja V (1994) Range of the photosynthetic control of postillumination P700 reduction rate in sunflower leaves. Photosynth Res 39: 39–50

    Article  CAS  Google Scholar 

  • Laisk A and Oja V (1998) Dynamic Gas Exchange of Leaf Photosynthesis. Measurement and Interpretation. CSIRO, Collingwood, Australia

    Google Scholar 

  • Laisk A and Sumberg A (1994) Partitioning of the leaf CO2 exchange into components using CO2 exchange and fluorescence measurements. Plant Physiol 106: 689–695

    PubMed  CAS  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kas-parova I, Pettai H, Padu E and Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Env 25: 923–943

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V and Peterson RB (2005) Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H and Oja V (2006) C3 photosynthesis in silico. Photosynth Res 90: 45–66

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E and Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48: 1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Leegood RC and Von Caemmerer S (1989) Some relationships between contents of photosynthetic intermediates and the rate of photosynthetic carbon assimilation in leaves of Zea mays L. Planta 178: 258–266

    Article  CAS  Google Scholar 

  • Mahler HR and Cordes EH (1966) Biological Chemistry. Harper & Row, New York

    Google Scholar 

  • Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q and Van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 7: 1609–1638

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Edwards GE and Ku MSB (1984) C3–C4 intermediate photosynthesis in plants. Bioscience 34: 563–574

    Article  CAS  Google Scholar 

  • Noctor G and Foyer CH (2000) Homeostasis of adenylate status during photosynthesis in a fluctuating environment. J Exp Bot 51: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Eichelmann H, Peterson RB, Rasulov B and Laisk A (2003) Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves. Photosynth Res 78: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Eichelmann H and Laisk A (2007) Calibration of simultaneous measurements of photosynthetic carbon dioxide uptake and oxygen evolution in leaves. Plant Cell Physiol 48: 198–203

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Eichelmann H and Laisk A (2008) Equilibrium or disequilibrium? A dual-wavelength investigation of photosystem I donors. In: Allen JF, Gantt E, Golbeck JH and Osmond B (eds) Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis, pp 687– 690. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Peisker M (1979) Conditions for low and oxygen-independent CO2 compensation concentrations in C4 plants as derived from a simple model. Photosynthetica 13: 198–207

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, Van Stokkum IHM, Kennis JTM, Pascal AA, Van Amerongen H, Bruno R, Horton P and Van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450: 575–578

    Article  PubMed  CAS  Google Scholar 

  • Rumberg B, Schubert K, Strelow F and Tran-Anh T (1990) The H+/ATP coupling ratio at the H+-ATP-synthase of spinach chloroplasts is four. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol. III, pp 125–128. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ and Von Caem-merer S (2000) Photosynthetic electron sinks in in trans-genic tobacco with reduced amounts of rubisco: little evidence for significant Mehler reaction. J Exp Bot 51: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME and Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97: 14283–14288

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161: 341–370

    Article  CAS  Google Scholar 

  • Scheuring S, Fotiadis D, Möller C, Müller SA, Engel A and Müller DJ (2001) Single proteins observed by atomic force microscopy. Single Mol 2: 59–67

    Article  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H and Müller DJ (2000) Proton powered turbine of a plant motor. Nature 405: 418–419

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Dencher NA and Müller DJ (2003) Fourteen protomers compose the oligomer II of the proton-rotor in spinach chloroplast ATP synthase. J Mol Biol 333: 337–344

    Article  PubMed  CAS  Google Scholar 

  • Stitt M and Heldt HW (1985) Intercellular metabolite distribution and properties of the cytosolic fructosebisphos-phatase in leaves of Zea mays L. Planta 164: 179–188

    Article  CAS  Google Scholar 

  • Sumberg A and Laisk A (1995) Measurement of the CO2/O2 specificity of Rubisco in leaves. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol. V, pp 615–618. Kluwer, Dordrecht/Boston, MA/London

    Google Scholar 

  • Süss K-H, Prokhorenko I and Adler K (1995) In situ association of calvin cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, ferredoxin-NADP+reductase, and nitrite reductase with thylacoid and pyrenoid membranes of Chlamydomonas reinhardtii chloroplasts as revealed by immunoelectron microscopy. Plant Physiol 107: 1387–1397

    PubMed  Google Scholar 

  • Takabayashi A, Kishine M, Asada K, Endo T and Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci USA 102: 16898–16903

    Article  PubMed  CAS  Google Scholar 

  • Talts E, Oja V, Rämma H, Rasulov B, Anijalg A and Laisk A (2007) Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under far-red light in sunflower leaves. Photosynth Res 94: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Tremmel IG, Kirchhoff H, Weis E and Farquhar GD (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Bio-phys Acta 1607: 97–109

    Article  CAS  Google Scholar 

  • Usuda H (1987) Change in levels of intermediates of the C4 cycle and reductive pentose phosphate pathway under various light intensities in maize leaves. Plant Physiol 84: 549–554

    Article  PubMed  CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese P, Olive J, Bassi R and Wollman F-A (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88: 8262–8266

    Article  PubMed  CAS  Google Scholar 

  • Viil J, Laisk A, Oja V and Pärnik T (1972) Positive influence of oxygen on photosynthesis. Doklady AN SSSR (Proc Acad Sci USSR) 204 (5): 1269–1271 (in Russian)

    CAS  Google Scholar 

  • Viil J, Laisk A, Oja V and Pärnik T (1977) Enhancement of photosynthesis caused by oxygen under saturating irra-diance and high CO2 concentrations. Photosynthetica 11 (3): 251–259

    CAS  Google Scholar 

  • Von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publ, Collingwood, Australia

    Google Scholar 

  • Von Caemmerer S and Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Article  Google Scholar 

  • Von Caemmerer S and Furbank RT (1999) Modeling C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 173–211. Academic, San Diego, CA/ London/Boston, MA/NewYork/Sydney/Tokyo/Toronto

    Chapter  Google Scholar 

  • Weiner H, Burnell JN, Woodrow IE, Heldt HW and Hatch MD (1988) Metabolite diffusion into bundle sheath cells from C4 Plants. Plant Physiol 88: 815–822

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191: 180–190

    Article  CAS  Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193: 530–535

    Article  CAS  Google Scholar 

  • Zhang H, Whitelegge JP and Cramer WA (2001) Ferredoxin: NADP+oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem 276: 38159–38165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laisk, A., Edwards, G. (2009). Leaf C4 Photosynthesis in silico: The CO2 Concentrating Mechanism. In: Laisk, A., Nedbal, L., Govindjee (eds) Photosynthesis in silico . Advances in Photosynthesis and Respiration, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9237-4_14

Download citation

Publish with us

Policies and ethics