Skip to main content

Escherichia coli Genome Engineering and Minimization forthe Construction of a Bioengine

  • Chapter
Systems Biology and Biotechnology of Escherichia coli

Abstract

A profusion of diverse genome-related information has been obtained by the sequencing of genomes from many microorganisms, functional analyses of these genomes, and the application of bioinformatics techniques to genomics, proteomics, and systems biology. The resulting barrage of data coupled with large-scale gene inactivation studies have allowed researchers to produce a genetic blueprint for a streamline, custom-designed microbe that carries the minimal gene set required for the organism to replicate in a given environment. On the basis of this minimal genome information, several research groups have generated minimal-genome Escherichia coli strains using sophisticated genome engineering techniques, such as the dual transposition, site-specific recombinations, and markerless genome recombination. These minimal genomes display various desirable traits for biological researches, such as improved genome stability, increased transformation efficacy, and higher production of biological materials. Therefore, the generation of a large number of deletion mutants of the minimal E. coli genomes coupled with restructuring of regulatory circuits may lead to facilitate the construction of a variety of custom-designed bacterial strains (also called a “bioengine”) with myriad practical and commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerley BJ, Rubin EJ, Novick VL et al. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A 99(2): 966–71

    PubMed  CAS  Google Scholar 

  • Ara K, Ozaki K, Nakamura K et al. (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46(Pt 3):169–78

    PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008

    Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A et al. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21(14):3329–30

    PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G, 3rd, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–74

    PubMed  CAS  Google Scholar 

  • Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21(2):501–8

    PubMed  CAS  Google Scholar 

  • Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297(5583):1016–8

    PubMed  CAS  Google Scholar 

  • Cho MK, Magnus D, Caplan AL et al. (1999) Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science 286(5447):2087, 2089–90

    Google Scholar 

  • Cooper VS, Schneider D, Blot M et al. (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183(9): 2834–41

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–5

    PubMed  CAS  Google Scholar 

  • Dedonder (1966) Levansucrase from Bacillus subtilis. Methods Enzymol 8:500–5

    Google Scholar 

  • Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    PubMed  CAS  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–69

    PubMed  CAS  Google Scholar 

  • Ellis HM, Yu D, DiTizio T et al. (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98(12):6742–6

    PubMed  CAS  Google Scholar 

  • Feher T, Papp B, Pal C et al. (2007) Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107(8):3498–513

    PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512

    PubMed  CAS  Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45

    PubMed  Google Scholar 

  • Forster AC, Church GM (2007) Synthetic biology projects in vitro. Genome Res 17(1):1–6

    PubMed  CAS  Google Scholar 

  • Fraser CM, Gocayne JD, White O et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403

    PubMed  CAS  Google Scholar 

  • Fujio T (2007) Minimum genome factory: innovation in bioprocesses through genome science. Biotechnol Appl Biochem 46(Pt 3):145–6

    PubMed  CAS  Google Scholar 

  • Fukiya S, Mizoguchi H, Mori H (2004) An improved method for deleting large regions of Escherichia coli K-12 chromosome using a combination of Cre/loxP and lambda Red. FEMS Microbiol Lett 234(2):325–31

    PubMed  CAS  Google Scholar 

  • Gay P, Le Coq D, Steinmetz M et al. (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164(2):918–21

    PubMed  CAS  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–84

    PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–91

    PubMed  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C et al. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867): 1215–20

    PubMed  CAS  Google Scholar 

  • Giga-Hama Y, Tohda H, Takegawa K et al. (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):147–55

    PubMed  CAS  Google Scholar 

  • Goryshin IY, Jendrisak J, Hoffman LM et al. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18(1):97–100

    PubMed  CAS  Google Scholar 

  • Goryshin IY, Naumann TA, Apodaca J et al. (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13(4):644–53

    PubMed  CAS  Google Scholar 

  • Hamilton CM, Aldea M, Washburn BK et al. (1989) New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171(9):4617–22

    PubMed  CAS  Google Scholar 

  • Hartman JL, 4th Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291(5506):1001–4

    Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H et al. (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55(1):137–49

    PubMed  CAS  Google Scholar 

  • Hasty J, McMillen D, Isaacs F et al. (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2(4):268–79

    PubMed  CAS  Google Scholar 

  • Hayashi K, Morooka N, Yamamoto Y et al. (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:7

    Google Scholar 

  • Herring CD, Raghunathan A, Honisch C et al. (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38(12):1406–12

    PubMed  CAS  Google Scholar 

  • Hirashima K, Iwaki T, Takegawa K et al. (2006) A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acid Res 34(2)11

    Google Scholar 

  • Hutchison CA, Peterson SN, Gill SR et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286(5447):2165–9

    PubMed  CAS  Google Scholar 

  • Ishii N, Nakahigashi K, Baba T et al. (2007) Multiple high-throughput analyses monitor the response of E coli to perturbations. Science 316(5824):593–7

    PubMed  CAS  Google Scholar 

  • Itaya M (1995) An estimation of minimal genome size required for life. FEBS Lett 362(3): 257–60

    PubMed  CAS  Google Scholar 

  • Itaya M, Fujita K, Kuroki A et al. (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 5(1):41–3

    PubMed  CAS  Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100(24):14339–44

    PubMed  CAS  Google Scholar 

  • Joyce AR, Reed JL, White A et al. (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188(23):8259–71

    PubMed  CAS  Google Scholar 

  • Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 3:132

    PubMed  Google Scholar 

  • Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381(6584):694–6

    PubMed  CAS  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420(6912):206–10

    PubMed  CAS  Google Scholar 

  • Knuth K, Niesalla H, Hueck CJ et al. (2004) Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 51(6):1729–44

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–83

    PubMed  CAS  Google Scholar 

  • Kolisnychenko V, Plunkett G, 3rd, Herring CD et al. (2002) Engineering a reduced Escherichia coli genome. Genome Res 12(4):640–7

    PubMed  CAS  Google Scholar 

  • Koob MD, Shaw AJ, Cameron DC (1994) Minimizing the genome of Escherichia coli. Motivation and strategy. Ann NY Acad Sci 745:1–3

    PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1(2):127–36

    PubMed  CAS  Google Scholar 

  • Koonin EV, Wolf YI, Karev GP (2002) The structure of the protein universe and genome evolution. Nature 420(6912):218–23

    PubMed  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–56

    PubMed  CAS  Google Scholar 

  • Leenhouts K, Buist G, Bolhuis A et al. (1996) A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253(1–2):217–24

    Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179(20):6228–37

    PubMed  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602

    PubMed  CAS  Google Scholar 

  • Luisi PL (2002) Toward the engineering of minimal living cells. Anat Rec 268(3):208–14

    PubMed  CAS  Google Scholar 

  • Maniloff J (1996) The minimal cell genome: “on being the right size”. Proc Natl Acad Sci U S A 93(19):10004–6

    PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Mizoguchi H, Mori H, Fujio T (2007a) Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):157–67

    PubMed  CAS  Google Scholar 

  • Mizoguchi H, Tanaka-Masuda K, Mori H (2007b) A simple method for multiple modification of the Escherichia coli K-12 chromosome. Biosci Biotechnol Biochem 71(12): 2905–11

    PubMed  CAS  Google Scholar 

  • Morimoto T, Kadoya R, Endo K et al. (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15(2):73–81

    PubMed  CAS  Google Scholar 

  • Murakami K, Tao E, Ito Y et al. (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75(3):589–97

    PubMed  CAS  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–71

    PubMed  CAS  Google Scholar 

  • Mushegian A (1999) The minimal genome concept. Curr Opin Genet Dev 9(6):709–14

    PubMed  CAS  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93(14):10268–73

    PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB et al. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–8

    PubMed  CAS  Google Scholar 

  • Park JH, Lee KH, Kim TY et al. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–802

    PubMed  CAS  Google Scholar 

  • Perna NT, Plunkett G, 3rd, Burland V et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409(6819):529–33

    PubMed  CAS  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z et al. (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27(22): 4409–15

    PubMed  CAS  Google Scholar 

  • Posfai G, Koob M, Hradecna Z et al. (1994) In vivo excision and amplification of large segments of the Escherichia coli genome. Nucleic Acids Res 22(12):2392–8

    PubMed  CAS  Google Scholar 

  • Posfai G, Plunkett G, 3rd, Feher T et al. (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–6

    PubMed  CAS  Google Scholar 

  • Razin S (1997a) Comparative genomics of mycoplasmas. Wien Klin Wochenschr 109(14–15): 551–6

    PubMed  CAS  Google Scholar 

  • Razin S (1997b) The minimal cellular genome of mycoplasma. Indian J Biochem Biophys 34(1–2):124–30

    PubMed  CAS  Google Scholar 

  • Richmond CS, Glasner JD, Mau R et al. (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27(19):3821–35

    PubMed  CAS  Google Scholar 

  • Riley M, Abe T, Arnaud MB et al. (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot – 2005. Nucleic Acids Res 34(1):1–9

    PubMed  CAS  Google Scholar 

  • Riley M, Serres MH (2000) Interim report on genomics of Escherichia coli. Annu Rev Microbiol 54:341–411

    PubMed  CAS  Google Scholar 

  • Russell CB, Dahlquist FW (1989) Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker. J Bacteriol 171(5):2614–8

    PubMed  CAS  Google Scholar 

  • Sachs K, Perez O, Pe’er D et al. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721):523–9

    PubMed  CAS  Google Scholar 

  • Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–35

    PubMed  CAS  Google Scholar 

  • Smalley DJ, Whiteley M, Conway T (2003) In search of the minimal Escherichia coli genome. Trends Microbiol 11(1):6–8

    PubMed  CAS  Google Scholar 

  • Smith HO, Hutchison CA, 3rd, Pfannkoch C et al. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A 100(26):15440–5

    PubMed  CAS  Google Scholar 

  • Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150(4):467–86

    PubMed  CAS  Google Scholar 

  • Sung BH, Lee CH, Yu BJ et al. (2006) Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications. Appl Environ Microbiol 72(5):3336–42

    PubMed  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y et al. (2005a) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69(2):151–161

    PubMed  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y et al. (2005b) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71(12):8472–80

    PubMed  CAS  Google Scholar 

  • Suzuki N, Okayama S, Nonaka H et al. (2005c) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71(6):3369–72

    CAS  Google Scholar 

  • Suzuki N, Tsuge Y, Inui M et al. (2005d) Cre/loxP-mediated deletion system for large genome rearrangements in Corinebacterium glutamicum. Appl Microbiol Biotechnol 67(2):225–33

    CAS  Google Scholar 

  • Suzuki N, Okai N, Nonaka H et al. (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72(5):3750–5

    PubMed  CAS  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–90

    PubMed  CAS  Google Scholar 

  • Tao H, Bausch C, Richmond C et al. (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181(20):6425–40

    PubMed  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–7

    PubMed  CAS  Google Scholar 

  • Tsuge Y, Suzuki N, Inui M et al. (2007) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74(6):1333–41

    PubMed  CAS  Google Scholar 

  • Tumpey TM, Basler CF, Aguilar PV et al. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745):77–80

    PubMed  CAS  Google Scholar 

  • Wang G, Blakesley RW, Berg DE et al. (1993) pDUAL: a transposon-based cosmid cloning vector for generating nested deletions and DNA sequencing templates in vivo. Proc Natl Acad Sci U S A 90(16):7874–8

    PubMed  CAS  Google Scholar 

  • Welch RA, Burland V, Plunkett G, 3rd et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99(26):17020–4

    PubMed  CAS  Google Scholar 

  • Westers H, Dorenbos R, van Dijl JM et al. (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20(12):2076–90

    PubMed  CAS  Google Scholar 

  • Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694(1–3):299–310

    PubMed  CAS  Google Scholar 

  • Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181(6):1868–74

    PubMed  CAS  Google Scholar 

  • Yoon YG, Cho JH, Kim SC (1998) Cre/loxP-mediated excision and amplification of large segments of the Escherichia coli genome. Genet Anal 14(3):89–95

    PubMed  CAS  Google Scholar 

  • Yu BJ, KK, Lee JH (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Research 36:84

    Google Scholar 

  • Yu BJ, Sung BH, Koob MD et al. (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20(10):1018–23

    PubMed  CAS  Google Scholar 

  • Yu BJ, Sung BH, Lee JY et al. (2006) sucAB and sucCD are mutually essential genes in Escherichia coli. FEMS Microbiol Lett 254(2):245–50

    PubMed  CAS  Google Scholar 

  • Yu D, Ellis HM, Lee EC et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–83

    PubMed  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JP et al. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Chang Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sung, B.H., Lee, J.H., Kim, S.C. (2009). Escherichia coli Genome Engineering and Minimization forthe Construction of a Bioengine. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_2

Download citation

Publish with us

Policies and ethics