Skip to main content

Beginning in the middle of the last century, a decreasing incidence of classical tuberculosis was noted in economically developed countries and was attributed to improved nutrition, the consistent use of extensive screening and tracking methods, the introduction of reliable diagnostic methods and the effective antibacterial treatment of tuberculosis. In populations of cattle, national control programmes were adopted, which resulted in the gradual reduction of Mycobacterium bovis infection sources and their elimination in many countries. Meat inspection in abattoirs and the obligatory pasteurisation of cow milk during the same period resulted in a substantial decrease or in the elimination of bovine tuberculosis from the human population (Thoen and Steele, 1995; Grange, 1996; Thoen et al., 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcaide F, Richter I, Bernasconi C, Springer B, Hagenau C, Schulze-Robbecke R, Tortoli E, Martin R, Bottger EC, Telenti A (1997) Heterogeneity and clonality among isolates of Mycobacterium kansasii: implications for epidemiological and pathogenicity studies. J. Clin. Microbiol. 35:1959–1964

    PubMed  CAS  Google Scholar 

  • Alugupalli S, Larsson L, Slosarek M, Jaresova M (1992) Application of Gas-Chromatography Mass-Spectrometry for Rapid Detection of Mycobacterium-Xenopi in Drinking-Water. Appl. Environ. Microbiol. 58:3538–3541

    PubMed  CAS  Google Scholar 

  • Archuleta RJ, Mullens P, Primm TP (2002) The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex. Arch. Microbiol. 178:311–314

    Article  PubMed  CAS  Google Scholar 

  • Aronson JD (1926) Spontaneous tuberculosis in salt water fish. J. Inf. Dis. 39:315–320

    Article  Google Scholar 

  • Ayele WY, Bartos M, Svastova P, Pavlik I (2004) Distribution of Mycobacterium avium subsp paratuberculosis in organs of naturally infected bull-calves and breeding bulls. Vet. Microbiol. 103:209–217

    Article  PubMed  CAS  Google Scholar 

  • Ayele WY, Machackova M, Pavlik I (2001) The transmission and impact of paratuberculosis infection in domestic and wild ruminants. Veterinarni Medicina 46:205–224

    Google Scholar 

  • Ayele WY, Svastova P, Roubal P, Bartos M, Pavlik I (2005) Mycobacterium avium subspecies paratuberculosis cultured from locally and commercially pasteurized cow’s milk in the Czech Republic. Appl. Environ. Microbiol. 71:1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Baess I (1979) Deoxyribonucleic acid relatedness among species of slowly-growing mycobacteria. Acta Pathol. Microbiol. Scand. [B]. 87:221–226

    CAS  Google Scholar 

  • Baess I (1983) Deoxyribonucleic acid relationships between different serovars of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Acta Pathol. Microbiol. Immunol. Scand. [B]. 91:201–203

    CAS  Google Scholar 

  • Banks J, Jenkins PA, Smith AP (1985) Pulmonary Infection with Mycobacterium-Malmoense – A Review of Treatment and Response. Tubercle. 66:197–203

    Article  PubMed  CAS  Google Scholar 

  • Banks J, Smith AP, Jenkins PA (1983) Mycobacterium-Malmoense – Problems with Treatment and Diagnosis – A Case-Report. Tubercle. 64:217–219

    Article  PubMed  CAS  Google Scholar 

  • Bardouniotis E, Huddleston W, Ceri H, Olson ME (2001) Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC (TM) assay system. Fems Microbiol. Lett. 203:263–267

    PubMed  CAS  Google Scholar 

  • Barker DJP (1972) Distribution of Buruli Disease in Uganda. Trans. R. Soc. Trop. Med. Hyg. 66:867–874

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Hlozek P, Svastova P, Dvorska L, Bull T, Matlova L, Parmova I, Kuhn I, Stubbs J, Moravkova M, Kintr J, Beran V, Melicharek I, Ocepek M, Pavlik I (2006) Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards. J. Microbiol. Methods. 64:333–345

    Article  PubMed  CAS  Google Scholar 

  • Beerwerth W (1973) [The use of natural substrates as culture media for mycobacteria]. Ann. Soc. Belg. Med. Trop. 53:355–360

    PubMed  CAS  Google Scholar 

  • Beerwerth W, Kessel U (1976) [Mycobacteria in the environment of man and animal (proceedings)]. Zentralbl. Bakteriol. [Orig. A]. 235:177–183

    Google Scholar 

  • Beggs ML, Stevanova R, Eisenach KD (2000) Species identification of Mycobacterium avium complex isolates by a variety of molecular techniques. J. Clin. Microbiol. 38: 508–512

    PubMed  CAS  Google Scholar 

  • Belisle JT, Pascopella L, Inamine JM, Brennan PJ, Jacobs WR, Jr. (1991) Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium. J. Bacteriol. 173: 6991–6997

    PubMed  CAS  Google Scholar 

  • Beran V, Havelkova M, Kaustova J, Dvorska L, Pavlik I (2006a) Cell wall deficient forms of mycobacteria: a review. Veterinarni Medicina 51:365–389

    CAS  Google Scholar 

  • Beran V, Matlova L, Dvorska L, Svastova P, Pavlik I (2006b) Distribution of mycobacteria in clinically healthy ornamental fish and their aquarium environment. J. Fish. Dis. 29:383–393

    Article  PubMed  CAS  Google Scholar 

  • Bercovier H, Kafri O, Sela S (1986) Mycobacteria Possess A Surprisingly Small Number of Ribosomal-RNA Genes in Relation to the Size of Their Genome. Biochem. Biophys. Res. Commun. 136:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Berghaus RD, Farver TB, Anderson RJ, Jaravata CC, Gardner IA (2006) Environmental sampling for detection of Mycobacterium avium ssp. paratuberculosis on large California dairies. J. Dairy Sci. 89:963–970

    Article  PubMed  CAS  Google Scholar 

  • Bhatty MA, Turner DPJ, Chamberlain ST (2000) Mycobacterium marinum hand infection: case reports and review of literature. Br. J. Plast. Surg. 53:161–165

    Article  PubMed  CAS  Google Scholar 

  • Biet F, Boschiroli ML, Thorel MF, Guilloteau LA (2005) Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Vet. Res. 36:411–436

    Article  PubMed  Google Scholar 

  • Birkness KA, Swords WE, Huang PH, White EH, Dezzutti CS, Lal RB, Quinn FD (1999) Observed differences in virulence-associated phenotypes between a human clinical isolate and a veterinary isolate of Mycobacterium avium. Infect. Immun. 67:4895–4901

    PubMed  CAS  Google Scholar 

  • Bland CS, Ireland JM, Lozano E, Alvarez ME, Primm TP (2005) Mycobacterial ecology of the Rio Grande. Appl. Environ. Microbiol. 71:5719–5727

    Article  PubMed  CAS  Google Scholar 

  • Bolan G, Reingold AL, Carson LA, Silcox VA, Woodley CL, Hayes PS, Hightower AW, McFarland L, Brown JW, III, Petersen NJ (1985) Infections with Mycobacterium chelonei in patients receiving dialysis and using processed hemodialyzers. J. Infect. Dis. 152:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The Envelope of Mycobacteria. Ann. Rev. Biochem. 64:29–63

    Article  PubMed  CAS  Google Scholar 

  • Brooks RW, Parker BC, Gruft H, Falkinham JO, III (1984) Epidemiology of infection by nontuberculous mycobacteria. V. Numbers in eastern United States soils and correlation with soil characteristics. Am. Rev. Respir. Dis. 130:630–633

    PubMed  CAS  Google Scholar 

  • Buchholz UT, Mcneil MM, Keyes LE, Good RC (1998) Mycobacterium malmoense infections in the United States, January 1993 through June 1995. Clin. Infect. Dis. 27: 551–558

    Article  PubMed  CAS  Google Scholar 

  • Buhler VB, Pollak. A. (1953) Human infection with atypical acid-fast organisms; report of two cases with pathologic findings. Am. J. Clin. Pathol. 23:363–374

    PubMed  CAS  Google Scholar 

  • Bullin CH, Tanner EI, Collins CH (1970) Isolation of Mycobacterium-Xenopei from Water Taps. J. Hyg. Camb. 68:97–100

    Article  PubMed  CAS  Google Scholar 

  • Burns DN, Wallace RJ, Schultz ME, Zhang YS, Zubairi SQ, Pang YJ, Gibert CL, Brown BA, Noel ES, Gordin FM (1991) Nosocomial Outbreak of Respiratory-Tract Colonization with Mycobacterium-Fortuitum – Demonstration of the Usefulness of Pulsed-Field Gel-Electrophoresis in An Epidemiologic Investigation. Am. Rev. Respir. Dis. 144: 1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Camargo D, Saad C, Ruiz F, Ramirez ME, Lineros M, Rodriguez G, Navarro E, Pulido B, Orozco LC (1996) Iatrogenic outbreak of M-chelonae skin abscesses. Epidemiol. Infect. 117:113–119

    Article  PubMed  CAS  Google Scholar 

  • Carson LA, Bland LA, Cusick LB, Favero MS, Bolan GA, Reingold AL, Good RC (1988) Prevalence of nontuberculous mycobacteria in water supplies of hemodialysis centers. Appl. Environ. Microbiol. 54:3122–3125

    PubMed  CAS  Google Scholar 

  • Carson LA, Petersen NJ, Favero MS, Aguero SM (1978) Growth-Characteristics of Atypical Mycobacteria in Water and Their Comparative Resistance to Disinfectants. Appl. Environ. Microbiol. 36:839–846

    PubMed  CAS  Google Scholar 

  • Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J. Med. Microbiol. 52:747–752

    Article  PubMed  CAS  Google Scholar 

  • Carter G, Young LS, Bermudez LE (2004) A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. Antimicrob. Agents Chemother. 48: 4907–4910

    Article  PubMed  CAS  Google Scholar 

  • Cernicchiaro N, Wells SJ, Janagama H, Sreevatsan S (2008) Influence of type of culture medium on characterization of Mycobacterium avium subsp paratuberculosis subtypes. J. Clin. Microbiol. 46:145–149

    Article  PubMed  CAS  Google Scholar 

  • Cerny L (1982) [Development of morphological changes after experimental Mycobacterium avium infection in ducks and geese]. Veterinarni Medicina 27:95–100

    PubMed  CAS  Google Scholar 

  • Chapman JS (1971) The ecology of the atypical mycobacteria. Arch. Environ. Health. 22:41–46

    PubMed  CAS  Google Scholar 

  • Chobot S, Malis J, Sebakova H, Pelikan M, Zatloukal O, Palicka P, Kocurova D (1997) Endemic incidence of infections caused by Mycobacterium kansasii in the Karvina district in 1968–1995 (analysis of epidemiological data – review). Cent. Eur. J. Public Health. 5:164–173

    PubMed  CAS  Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS, Bermudez LE (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65: 3759–3767

    PubMed  CAS  Google Scholar 

  • Collins CH, Grange JM, Yates MD (1984) Mycobacteria in water. J. Appl. Bacteriol. 57:193–211

    Article  PubMed  CAS  Google Scholar 

  • Collins CH, Yates MD (1984) Infection and Colonization by Mycobacterium-Kansasii and Mycobacterium-Xenopi – Aerosols As A Possible Source. J. Infect. 8:178–179

    Article  PubMed  CAS  Google Scholar 

  • Collins DM (1994) DNA-Fingerprinting of Mycobacterium-Xenopi Strains. Lett. Appl. Microbiol. 18:234–235

    Article  CAS  Google Scholar 

  • Collins DM, Gabric DM, de Lisle GW (1990) Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. J. Clin. Microbiol. 28:1591–1596

    PubMed  CAS  Google Scholar 

  • Collins FM (1986) Bactericidal Activity of Alkaline Glutaraldehyde Solution Against A Number of Atypical Mycobacterial Species. J. Appl. Bacteriol. 61:247–251

    Article  PubMed  CAS  Google Scholar 

  • Cook KL, Britt JS (2007) Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR. J. Microbiol. Methods. 69:154–160

    Article  PubMed  CAS  Google Scholar 

  • Cooney RP (1991) A study of environmental mycobacteria in Ireland. M.A. Thesis, National University of Ireland, Dublin.

    Google Scholar 

  • Costrini AM, Mahler DA, Gross WM, Hawkins JE, Yesner R, Desopo ND (1981) Clinical and Roentgenographic Features of Nosocomial Pulmonary-Disease Due to Mycobacterium-Xenopi. Am. Rev. Respir. Dis. 123:104–109

    PubMed  CAS  Google Scholar 

  • Covert TC, Rodgers MR, Reyes AL, Stelma GN, Jr. (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Appl. Environ. Microbiol. 65:2492–2496

    PubMed  CAS  Google Scholar 

  • Cowan HE, Falkinham JO, III (2001) A luciferase-based method for assessing chlorine-susceptibility of Mycobacterium avium. J. Microbiol. Methods. 46:209–215

    Article  PubMed  CAS  Google Scholar 

  • Danesh-Clough R, Theis JC, van der Linden A (2000) Mycobacterium xenopi infection of the spine – A case report and literature review. Spine. 25:626–628

    Article  PubMed  CAS  Google Scholar 

  • Dawson DJ, Jennis F (1980) Mycobacteria with a growth requirement for ferric ammonium citrate, identified as Mycobacterium haemophilum. J. Clin. Microbiol. 11:190–192

    PubMed  CAS  Google Scholar 

  • De Groote MA, Huitt G (2006) Infections due to rapidly growing mycobacteria. Clin. Infect. Dis. 42:1756–1763

    Article  PubMed  Google Scholar 

  • De Groote MA, Pace NR, Fulton K, Falkinham JO, III (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol. 72:7602–7606

    Article  PubMed  CAS  Google Scholar 

  • del Giudice P, Bernard E, Perrin C, Bernardin G, Fouche R, Boissy C, Durant J, Dellamonica P (2000) Unusual cutaneous manifestations of miliary tuberculosis. Clin. Infect. Dis. 30:201–204

    Article  PubMed  CAS  Google Scholar 

  • Domenech P, Menendez MC, Garcia MJ (1994) Restriction-Fragment-Length-Polymorphisms of 16S Ribosomal-RNA Genes in the Differentiation of Fast-Growing Mycobacterial Species. Fems Microbiol. Lett. 116:19–24

    Article  PubMed  CAS  Google Scholar 

  • Donnabella V, Salazar-Schicchi J, Bonk S, Hanna B, Rom WN (2000) Increasing incidence of Mycobacterium xenopi at Bellevue Hospital – An emerging pathogen or a product of improved laboratory methods? Chest. 118:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Duker AA, Portaels F, Hale M (2006) Pathways of Mycobacterium ulcerans infection: A review. Environ. Int. 32:567–573

    Article  PubMed  Google Scholar 

  • Durnez L, Eddyani M, Mgode GF, Katakweba A, Katholi CR, Machang’u RR, Kazwala RR, Portaels F, Leirs H (2008) First detection of mycobacteria in African rodents and insectivores, using stratified pool screening. Appl. Environ. Microbiol. 74:768–773

    Article  PubMed  CAS  Google Scholar 

  • Dvorska L, Bull TJ, Bartos M, Matlova L, Svastova P, Weston RT, Kintr J, Parmova I, van Soolingen D, Pavlik I (2003) A standardised restriction fragment length polymorphism (RFLP) method for typing Mycobacterium avium isolates links IS901 with virulence for birds. J. Microbiol. Methods. 55:11–27

    Article  PubMed  CAS  Google Scholar 

  • Dvorska L, Matlova L, Ayele WY, Fischer OA, Amemori T, Weston RT, Alvarez J, Beran V, Moravkova M, Pavlik I (2007) Avian tuberculosis in naturally infected captive water birds of the Ardeideae and Threskiornithidae families studied by serotyping, IS901 RFLP typing, and virulence for poultry. Vet. Microbiol. 119:366–374

    Article  PubMed  CAS  Google Scholar 

  • Dvorska L, Matlova L, Bartos M, Parmova I, Bartl J, Svastova P, Bull TJ, Pavlik I (2004) Study of Mycobacterium avium complex strains isolated from cattle in the Czech Republic between 1996 and 2000. Veterinary Microbiology. 99: 239–250

    Article  PubMed  CAS  Google Scholar 

  • Engel HW, Berwald LG, Havelaar AH (1980) The occurrence of Mycobacterium kansasii in tapwater. Tubercle. 61: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Erardi FX, Failla ML, Falkinham JO, III (1987) Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 53: 1951–1954

    PubMed  CAS  Google Scholar 

  • Falkinham JO (2003) Factors influencing the chlorine susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 69:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO, III, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 67:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO, III, Parker BC, Gruft H (1980) Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am. Rev. Respir. Dis. 121:931–937

    PubMed  Google Scholar 

  • Fauvilledufaux M, Maes N, Severin E, Farin C, Serruys E, Struelens M, Younes N, Vincke JP, Devos MJ, Bollen A, Godfroid E (1995) Rapid identification of Mycobacterium xenopi from bacterial colonies or Bactec culture by the polymerase chain-reaction and a luminescent sandwich hybridization assay. Res. Microbiol. 146:349–356

    Article  CAS  Google Scholar 

  • Fischeder R, Schulze-Robbecke R, Weber A (1991) Occurrence of mycobacteria in drinking water samples. Zentralbl. Hyg. Umweltmed. 192:154–158

    PubMed  CAS  Google Scholar 

  • Fischer O, Matlova L, Bartl J, Dvorska L, Melicharek I, Pavlik I (2000) Findings of mycobacteria in insectivores and small rodents. Folia Microbiol. (Praha). 45:147–152

    Article  CAS  Google Scholar 

  • Fischer OA, Matlova L, Bartl J, Dvorska L, Svastova P, du Maine R, Melicharek I, Bartos M, Pavlik I (2003) Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet. Microbiol. 91:325–338

    Article  PubMed  CAS  Google Scholar 

  • Fischer OA, Matlova L, Dvorska L, Svastova P, Bartos M, Weston RT, Pavlik I (2006) Various stages in the life cycle of syrphid flies (Eristalis tenax; Diptera: Syrphidae) as potential mechanical vectors of pathogens causing mycobacterial infections in pig herds. Folia Microbiol. (Praha). 51:147–153

    Article  CAS  Google Scholar 

  • France AJ, Mcleod DT, Calder MA, Seaton A (1987) Mycobacterium-Malmoense Infections in Scotland – An Increasing Problem. Thorax. 42:593–595

    Article  PubMed  CAS  Google Scholar 

  • Francis J, Macturk HM, Madinaveitia J, Snow GA (1953) Mycobactin, A Growth Factor for Mycobacterium-Johnei. 1. Isolation from Mycobacterium-Phlei. Biochem. J. 55: 596–607

    PubMed  CAS  Google Scholar 

  • Frehel C, Offredo C, de Chastellier C (1997) The phagosomal environment protects virulent Mycobacterium avium from killing and destruction by clarithromycin. Infect. Immun. 65:2792–2802

    PubMed  CAS  Google Scholar 

  • Friend M, Franson JC (1999) Field manual of wildlife diseases; general field procedures and diseases of birds. USGS-National Wildlife Health Center, http://www.nwhc.usgs.gov/publications/field_manual.

  • Fuchsova M, Zima Z, Horak Z, Kubin M (1990) Nosocomial occurrence of M. xenopi among hospitalized patients. (In Czech). Stud. Pneumol. Phtiseol. Cechoslov. 50: 557–562

    Google Scholar 

  • Gelder CM, Hart KW, Williams OM, Lyons E, Welsh KI, Campbell IA, Marshall SE (2000) Vitamin D receptor gene polymorphisms and susceptibility to Mycobacterium malmoense pulmonary disease. J. Infect. Dis. 181:2099–2102

    Article  PubMed  CAS  Google Scholar 

  • George KL, Parker BC, Gruft H, Falkinham JO, III (1980) Epidemiology of infection by nontuberculous mycobacteria. II. Growth and survival in natural waters. Am. Rev. Respir. Dis. 122:89–94

    PubMed  CAS  Google Scholar 

  • George SL, Schlesinger LS (1999) Mycobacterium neoaurum – An unusual cause of infection of vascular catheters: Case report and review. Clin. Infect. Dis. 28: 682–683

    Article  PubMed  CAS  Google Scholar 

  • Gerlach H (1994) Mycobacterium. In: B.W. Ritchie, G.J. Harrison, L.R. Harrison (Eds.), Avian Medicine: Principles and Applications. Lake Worth, Florida, Wingers Publishing. 971–975

    Google Scholar 

  • Glickman SE, Kilburn JO, Butler WR, Ramos LS (1994) Rapid Identification of Mycolic Acid Patterns of Mycobacteria by High-Performance Liquid-Chromatography Using Pattern-Recognition Software and A Mycobacterium Library. J. Clin. Microbiol. 32:740–745

    PubMed  CAS  Google Scholar 

  • Goldblatt MR, Ribes JA (2002) Mycobacterium mucogenicum isolated from a patient with granulomatous hepatitis. Arch. of Pathol. Lab. Med. 126:73–75

    Google Scholar 

  • Gombert ME, Goldstein EJC, Corrado ML, Stein AJ, Butt KMH (1981) Disseminated Mycobacterium-Marinum Infection After Renal-Transplantation. Ann. Int Med. 94:486–487

    PubMed  CAS  Google Scholar 

  • Good RC, Snider DE, Jr. (1982) Isolation of nontuberculous mycobacteria in the United States, 1980. J. Infect. Dis. 146:829–833

    Article  PubMed  CAS  Google Scholar 

  • Gouby A, Branger B, Oules R, Ramuz M (1988) Two cases of Mycobacterium haemophilum infection in a renal-dialysis unit. J. Med. Microbiol. 25:299–300

    Article  PubMed  CAS  Google Scholar 

  • Grange JM (1996) Mycobacteria and human disease. 2nd ed. London, Arnold, 230 pp

    Google Scholar 

  • Greenstein RJ (2003) Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect. Dis. 3:507–514

    Article  PubMed  Google Scholar 

  • Grewal SK, Rajeev S, Sreevatsan S, Michel FC, Jr. (2006) Persistence of Mycobacterium avium subsp. paratuberculosis and other zoonotic pathogens during simulated composting, manure packing, and liquid storage of dairy manure. Appl. Environ. Microbiol. 72:565–574

    Article  PubMed  CAS  Google Scholar 

  • Gross WB, Falkinham JO, III, Payeur JB (1989) Effect of environmental-genetic interactions on Mycobacterium avium challenge infection. Avian Dis. 33:411–415

    Article  PubMed  CAS  Google Scholar 

  • Gwozdz JM (2006) Comparative evaluation of two decontamination methods for the isolation of Mycobacterium avium subspecies paratuberculosis from faecal slurry and sewage. Vet. Microbiol. 115:358–363

    Article  PubMed  CAS  Google Scholar 

  • Hagglblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaholassila EL, Salkinojasalonen MS, Klatte S, Kroppenstedt RM (1994) Transfer of Polychlorophenol-Degrading Rhodococcus-Chlorophenolicus (Apajalahti Et-Al 1986) to the Genus Mycobacterium as Mycobacterium-Chlorophenolicum Comb-Nov. Int. J. Syst. Bacteriol. 44:485–493

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Keevil CW, Lappin-Scott HM (1999) Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions. J. Appl. Microbiol. 85:60S–69S

    Article  Google Scholar 

  • Hall-Stoodley L, Lappin-Scott H (1998) Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol. Lett. 168:77–84

    Article  PubMed  CAS  Google Scholar 

  • Hanau LH, Leaf A, Soeiro R, Weiss LM, Pollack SS (1994) Mycobacterium-Marinum Infection in A Patient with the Acquired-Immunodeficiency-Syndrome. Cutis. 54:103–105

    PubMed  CAS  Google Scholar 

  • Harris NB, Barletta RG (2001) Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin. Microbiol. Rev. 14:489-+

    Article  PubMed  CAS  Google Scholar 

  • Hartwigk H, Stottmeier D (1963) On the variability of mycobacteria. Zentralbl. Bakteriol. [Orig.]. 189:430–453

    CAS  Google Scholar 

  • Hasonova L, Pavlik I (2006) Economic impact of paratuberculosis in dairy cattle herds: a review. Veterinarni Medicina 51:193–211

    Google Scholar 

  • Hauduroy P, Hovanessian A, Roussianos D (1965a) [Instability of chromogeneity in strains of Mycobacterium kansasii]. Ann. Inst. Pasteur. (Paris). 109:142–144

    CAS  Google Scholar 

  • Hauduroy P, Hovanessian A, Roussianos D (1965b) [Study on some characteristics of scotochromogenic variants of Mycobacterium kansasii, and especially of their pathogenicity for hamsters]. Ann. Inst. Pasteur. (Paris). 109:138–141

    CAS  Google Scholar 

  • Hayes PS, Mcgiboney DL, Band JD, Feeley JC (1982) Resistance of Mycobacterium-Chelonei-Like Organisms to Formaldehyde. Appl. Environ. Microbiol. 43: 722–724

    PubMed  CAS  Google Scholar 

  • Hector JSR, Pang YJ, Mazurek GH, Zhang YS, Brown BA, Wallace RJ (1992) Large Restriction Fragment Patterns of Genomic Mycobacterium-Fortuitum DNA As Strain-Specific Markers and Their Use in Epidemiologic Investigation of 4 Nosocomial Outbreaks. J. Clin. Microbiol. 30:1250–1255

    PubMed  CAS  Google Scholar 

  • Hejlicek K, Treml F (1995) [Comparison of the pathogenesis and epizootiologic importance of avian mycobacteriosis in various types of domestic and free-living syntropic birds]. Veterinarni Medicina 40:187–194

    CAS  Google Scholar 

  • Henriques B, Hoffner SE, Petrini B, Juhlin I, Wahlen P, Kallenius G (1994) Infection with Mycobacterium-Malmoense in Sweden – Report of 221 Cases. Clin. Infect. Dis. 18: 546–600

    Article  Google Scholar 

  • Hermon-Taylor J (2000) Mycobacterium avium subspecies paratuberculosis in the causation of Crohn’s disease. World J. Gastroenterol. 6:630–632

    PubMed  Google Scholar 

  • Hermon-Taylor J, Bull T (2002) Crohn’s disease caused by Mycobacterium avium subspecies paratuberculosis: a public health tragedy whose resolution is long overdue. J. Med. Microbiol. 51:3–6

    PubMed  Google Scholar 

  • Hermon-Taylor J, Bull TJ, Sheridan JM, Cheng J, Stellakis ML, Sumar N (2000) Causation of Crohn’s disease by Mycobacterium avium subspecies paratuberculosis. Can. J. Gastroenterol. 14:521–539

    PubMed  CAS  Google Scholar 

  • Hernandez-Divers SJ, Shearer D (2002) Pulmonary mycobacteriosis caused by Mycobacterium haemophilum and M marinum in a royal python. J. Am. Vet. Med. Assoc. 220:1661–1663

    Article  PubMed  Google Scholar 

  • Hoffner SE, Henriques B, Petrini B, Kallenius G (1991) Mycobacterium-Malmoense – An Easily Missed Pathogen. J. Clin. Microbiol. 29:2673–2674

    PubMed  CAS  Google Scholar 

  • Horacek J, Ulicna L (1973) M. balnei in colliery waters – infection agents of verrucous skin disease. Ceskoslovenska. dermatologie. 48:97–99

    PubMed  CAS  Google Scholar 

  • Horak Z, Janasova V, Polakova H, Kralova M, Rychlikova E (1991) Occurrence of pulmonary mycobacterioses due to M. xenopi in urban population. (In Czech). Stud. Pneumol. Phtiseol. Cechoslov. 51:51–56

    Google Scholar 

  • Horak Z, Polakova H, Kralova M (1986) Water-borne Mycobacterium xenopi--a possible cause of pulmonary mycobacteriosis in man. J. Hyg. Epidemiol. Microbiol. Immunol. 30:405–409

    PubMed  CAS  Google Scholar 

  • Hruska K, Bartos M, Kralik P, Pavlik I (2005) Mycobacterium avium subsp. paratuberculosis in powdered infant milk: paratuberculosis in cattle – the public health problem to be solved. Veterinarni Medicina 50:327–335

    Google Scholar 

  • Hughes MS, Ball NW, Beck LA, deLisle GW, Skuce RA, Neill SD (1997) Determination of the etiology of presumptive feline leprosy by 16S rRNA gene analysis. J. Clin. Microbiol. 35:2464–2471

    PubMed  CAS  Google Scholar 

  • Huttunen K, Ruotsalainen M, Iivanainen E, Torkko P, Katila ML, Hirvonen MR (2000) Inflammatory responses in RAW264.7 macrophages caused by mycobacteria isolated from moldy houses. Environ. Toxicol. Pharmacol. 8:237–244

    Article  PubMed  CAS  Google Scholar 

  • Jaravata CV, Smith WL, Rensen GJ, Ruzante JM, Cullor JS (2006) Detection of Mycobacterium avium subsp. paratuberculosis in bovine manure using Whatman FTA card technology and Lightcycler real-time PCR. Foodborne. Pathog. Dis. 3:212–215

    Article  PubMed  CAS  Google Scholar 

  • Jenkins PA, Tsukamura M (1979) Infections with Mycobacterium malmoense in England and Wales. Tubercle 60:71–76

    Article  PubMed  CAS  Google Scholar 

  • Jernigan JA, Farr BM (2000) Incubation period and sources of exposure for cutaneous Mycobacterium marinum infection: Case report and review of the literature. Clin. Infect. Dis. 31:439–443

    Article  PubMed  CAS  Google Scholar 

  • Johne HA, Frothingham L (1895) Ein eigentheumlicher Fall von Tuberculose beim Rind. Dtsch. Ztschr. Tier-Med. 21:438–454

    Google Scholar 

  • Jones DC, Gelder CM, Ahmad T, Campbell IA, Barnardo MCNM, Welsh KI, Marshall SE, Bunce M (2001) CD1 genotyping of patients with Mycobacterium malmoense pulmonary disease. Tissue Antigens. 58:19–23

    Article  PubMed  CAS  Google Scholar 

  • Jones JJ, Falkinham JO, III (2003) Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob. Agents Chemother. 47:2323–2326

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen JB (1977) Survival of Mycobacterium paratuberculosis in slurry. Nord. Vet. Med. 29:267–270

    PubMed  CAS  Google Scholar 

  • Jorgensen JB (1982) An improved medium for culture of Mycobacterium paratuberculosis from bovine faeces. Acta Vet. Scand. 23:325–335

    PubMed  CAS  Google Scholar 

  • Joynson DHM (1979) Water – Natural Habitat of Mycobacterium-Kansasii. Tubercle. 60:77–81

    Article  PubMed  CAS  Google Scholar 

  • Jucker MT, Falkinham JO, III (1990) Epidemiology of infection by nontuberculous mycobacteria IX. Evidence for two DNA homology groups among small plasmids in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Am. Rev. Respir. Dis. 142: 858–862

    PubMed  CAS  Google Scholar 

  • Katoch VM (2004) Infections due to non-tuberculous mycobacteria (NTM). Indian J. Med. Res. 120:290–304

    PubMed  CAS  Google Scholar 

  • Kauppinen J, Mantyjarvi R, Katila ML (1999) Mycobacterium malmoense-specific nested PCR based on a conserved sequence detected in random amplified polymorphic DNA fingerprints. J. Clin. Microbiol. 37:1454–1458

    PubMed  CAS  Google Scholar 

  • Kaustova J, Charvat B, Mudra R, Holendova E (1993a) Ostrava – a new endemic focus of Mycobacteria xenopi in the Czech Republic. Cent. Eur. J Public Health. 1:35–37

    PubMed  CAS  Google Scholar 

  • Kaustova J, Chmelik M, Ettlova D, Hudec V, Lazarova H, Richtrova S (1995) Disease due to Mycobacterium kansasii in the Czech Republic: 1984–89. Tuber. Lung Dis. 76:205–209

    Article  PubMed  CAS  Google Scholar 

  • Kaustova J, Martinek A, Curik R (1993b) A case of fatal septicemia due to Mycobacterium kansasii. Eur. J. Clin. Microbiol. Infect. Dis. 12:791–793

    Article  PubMed  CAS  Google Scholar 

  • Kazda J (1967) [Atypical mycobacteria in drinking water--the cause of para-allergies against tuberculin in animals]. Z. Tuberk. Erkr. Thoraxorg. 127:111–113

    PubMed  CAS  Google Scholar 

  • Kazda J (1973) [The importance of water for the spread of potentially pathogenic Mycobacteria. I. Possibilities for the multiplication of Mycobacteria (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 158:161–169

    CAS  Google Scholar 

  • Kazda J (1977) [The importance of sphagnum bogs in the ecology of Mycobacteria (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 165:323–334

    CAS  Google Scholar 

  • Kazda J (1978a) [Multiplication of mycobacteria in the gray layer of sphagnum vegetation (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 166:463–469

    CAS  Google Scholar 

  • Kazda J (1978b) [The behaviour of Mycobacterium intracellulare serotype Davis and Mycobacterium avium in the head region of sphagnum moss vegetation after experimental inoculation (author’s transl)]. Zentralbl. Bakteriol. [Orig. B]. 166:454–462

    CAS  Google Scholar 

  • Kazda J (2000) The ecology of mycobacteria. Kluwer Academic Publishers, Dordrecht, Boston, London, 72 pp.

    Book  Google Scholar 

  • Kazda J, Cooney R, Monaghan M, Quinn PJ, Stackebrandt E, Dorsch M, Daffe M, Muller K, Cook BR, Tarnok ZS (1993) Mycobacterium-Hiberniae Sp-Nov. Int. J. Syst. Bacteriol. 43:352–357

    Article  PubMed  CAS  Google Scholar 

  • Kazda J, Hoyte R (1972) Concerning Ecology of Mycobacterium Intracellular Serotype Davis. Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene Series A-Medical Microbiology Infectious Diseases Virology Parasitology. 222:506–509

    CAS  Google Scholar 

  • Kazda J, Muller HJ, Stackebrandt E, Daffe M, Muller K, Pitulle C (1992) Mycobacterium-Madagascariense Sp-Nov. Int. J. Syst. Bacteriol. 42:524–528

    Article  Google Scholar 

  • Kazda J, Stackebrandt E, Smida J, Minnikin DE, Daffe M, Parlett JH, Pitulle C (1990) Mycobacterium-Cookii Sp-Nov. Int. J. Syst. Bacteriol. 40:217–223

    Article  PubMed  CAS  Google Scholar 

  • Kelley LC, Deering KC, Kaye ET (1995) Cutaneous Mycobacterium chelonei presenting in an immunocompetent host: case report and review of the literature. Cutis. 56:293–295

    PubMed  CAS  Google Scholar 

  • Kent ML, Whipps CM, Matthews JL, Florio D, Watral V, Bishop-Stewart JK, Poort M, Bermudez L (2004) Mycobacteriosis in zebrafish (Danio rerio) research facilities. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. 138:383–390

    Article  CAS  Google Scholar 

  • Kerr-Pontes LRS, Barreto ML, Evangelista CMN, Rodrigues LC, Heukelbach J, Feldmeier H (2006) Socioeconomic, environmental, and behavioural risk factors for leprosy in North-east Brazil: results of a case-control study. Int. J Epidemiol. 35:994–1000

    Article  PubMed  Google Scholar 

  • Khan AA, Kim SJ, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp strain PYR-1, as Mycobacterium vanbaalenii sp nov. Int. J. Syst. Evol. Microbiol. 52:1997–2002

    Article  PubMed  CAS  Google Scholar 

  • Khooshabeh R, Grange JM, Yates MD, Mccartney ACE, Casey TA (1994) A Case-Report of Mycobacterium-Chelonae Keratitis and A Review of Mycobacterial Infections of the Eye and Orbit. Tuber. Lung Dis. 75:377–382

    Article  PubMed  CAS  Google Scholar 

  • Kiehn TE, White M (1994) Mycobacterium haemophilum: an emerging pathogen. Eur. J. Clin. Microbiol. Infect. Dis. 13:925–931

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Bernard EM, Kiehn TE, Armstrong D, Riley LW (1994) Restriction-Fragment-Length-Polymorphism Analysis of Clinical Isolates of Mycobacterium-Haemophilum. J. Clin. Microbiol. 32:1763–1767

    PubMed  CAS  Google Scholar 

  • Kim TH, Kubica GP (1972) Long-term preservation and storage of mycobacteria. Appl. Microbiol. 24:311–317

    PubMed  CAS  Google Scholar 

  • Kim TH, Kubica GP (1973) Preservation of mycobacteria: 100 percent viability of suspensions stored at –70 °C. Appl. Microbiol. 25:956–960

    PubMed  CAS  Google Scholar 

  • Kirschner RA, Parker BC, Falkinham JO (1999) Humic and fulvic acids stimulate the growth of Mycobacterium avium. FEMS Microbiol. Ecol. 30:327–332

    Article  PubMed  CAS  Google Scholar 

  • Kleespies M, Kroppenstedt RM, Rainey FA, Webb LE, Stackebrandt E (1996) Mycobacterium hodleri sp nov, a new member of the fast-growing mycobacteria capable of degrading polycyclic aromatic hydrocarbons. Int. J. Syst. Bacteriol. 46:683–687

    Article  PubMed  CAS  Google Scholar 

  • Kul O, Tunca R, Haziroglu R, Diker KS, Karahan S (2005) An outbreak of avian tuberculosis in peafowl (Pavo cristatus) and pheasants (Phasianus colchicus) in a zoological aviary in Turkey. Veterinarni Medicina 50:446–450

    Google Scholar 

  • Kusunoki S, Ezaki T (1992) Proposal of Mycobacterium-Peregrinum Sp-Nov, Nom Rev, and Elevation of Mycobacterium-Chelonae Subsp Abscessus (Kubica Et-Al) to Species Status – Mycobacterium-Abscessus Comb-Nov. Int. J. Syst. Bacteriol. 42:240–245

    Article  PubMed  CAS  Google Scholar 

  • Lagunas-Solar MC, Cullor JS, Zeng NX, Truong TD, Essert TK, Smith WL, Pina C (2005) Disinfection of dairy and animal farm wastewater with radiofrequency power. J. Dairy Sci. 88:4120–4131

    Article  PubMed  CAS  Google Scholar 

  • Larsen AB, Merkal RS, Vardaman TH (1956) Survival Time of Mycobacterium-Paratuberculosis. Am. J. Vet. Res. 17:549–551

    PubMed  CAS  Google Scholar 

  • Laussucq S, Baltch AL, Smith RP, Smithwick RW, Davis BJ, Desjardin EK, Silcox VA, Spellacy AB, Zeimis RT, Gruft HM, Good RC, Cohen ML (1988) Nosocomial Mycobacterium-Fortuitum Colonization from A Contaminated Ice Machine. Am. Rev. Respir. Dis. 138: 891–894

    Article  PubMed  CAS  Google Scholar 

  • Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl. Environ. Microbiol. 68:5318–5325

    Article  PubMed  CAS  Google Scholar 

  • Leoni E, Legnani P, Mucci MT, Pirani R (1999) Prevalence of mycobacteria in a swimming pool environment. J. Appl. Microbiol. 87:683–688

    Article  PubMed  CAS  Google Scholar 

  • Levy-frebault X, Grimont F, Grimont PAD, David HL (1986) Deoxyribonucleic-Acid Relatedness Study of the Mycobacterium-Fortuitum-Mycobacterium-Chelonae Complex. Int. J. Syst. Bacteriol. 36:458–460

    Article  Google Scholar 

  • Lindeboom JA, Prins JM, Bruijnesteijn van Coppenraet ES, Lindeboom R, Kuijper EJ (2005) Cervicofacial lymphadenitis in children caused by Mycobacterium haemophilum. Clin. Infect. Dis. 41:1569–1575

    Article  PubMed  Google Scholar 

  • Linell L, Norden A (1954) Mycobacterium balnei, a new acid-fast bacillus occurring in swimming pools and capable of producing skin lesions in humans. Acta Tuberc. Scand. Suppl. 33:1–84

    PubMed  CAS  Google Scholar 

  • Lombard JE, Wagner BA, Smith RL, McCluskey BJ, Harris BN, Payeur JB, Garry FB, Salman MD (2006) Evaluation of environmental sampling and culture to determine Mycobacterium avium subspecies paratuberculosis distribution and herd infection status on US dairy operations. J. Dairy Sci. 89:4163–4171

    Article  PubMed  CAS  Google Scholar 

  • Lovell R, Levi M, Francis J (1944) Studies on the survival of Johne’s bacilli. J. Comp. Pathol. 54:120–129

    Google Scholar 

  • Maccallum P (1948) A New Mycobacterial Infection in Man. 1. Clinical Aspects. J. Pathol. Bacteriol. 60:93–102

    Article  CAS  Google Scholar 

  • Machackova-Kopecna M, Bartos M, Straka M, Ludvik V, Svastova P, Alvarez J, Lamka J, Trcka I, Treml F, Parmova I, Pavlik I (2005) Paratuberculosis and avian tuberculosis infections in one red deer farm studied by IS900 and IS901 RFLP analysis. Vet. Microbiol. 105:261–268

    Article  PubMed  CAS  Google Scholar 

  • Marco I, Domingo M, Lavin S (2000) Mycobacterium infection in a captive-reared capercaillie (Tetrao urogallus). Avian Dis. 44:227–230

    Article  PubMed  CAS  Google Scholar 

  • Marks J, Jenkins PA (1971) The opportunist mycobacteria--a 20-year retrospect. Postgrad. Med. J. 47:705–709

    Article  PubMed  CAS  Google Scholar 

  • Marsollier L, Aubry J, Coutanceau E, Andre JPS, Small PL, Milon G, Legras P, Guadagnini S, Carbonnelle B, Cole ST (2005) Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulceransrequires host plasmatocytes and a macrolide toxin, mycolactone. Cell. Microbiol. 7:935–943

    Article  PubMed  CAS  Google Scholar 

  • Martinkova I, Sebakova H, Pelikan M, Zatloukal O (2001) [Endemic incidence of Mycobacterium kansasii infection in Karvina District 1968–1999; overview of the descriptive characteristics]. Epidemiol. Microbiol. Immunol. 50: 165–180

    CAS  Google Scholar 

  • Marx CE, Fan KL, Morris AJ, Wilson ML, Damiani A, Weinstein MP (1995) Laboratory and Clinical-Evaluation of Mycobacterium-Xenopi Isolates. Diagnostic Microbiology and Infections Disease 21:195–202

    Article  CAS  Google Scholar 

  • Matlova L, Dvorska L, Ayele WY, Bartos M, Amemori T, Pavlik I (2005) Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J. Clin. Microbiol. 43:1261–1268

    Article  PubMed  Google Scholar 

  • Matlova L, Dvorska L, Bartl J, Bartos M, Ayele WY, Alexa M, Pavlik I (2003) Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Veterinarni Medicina 48:343–357

    Google Scholar 

  • McCarthy CM, Schaefer JO (1974) Response of Mycobacterium avium to ultraviolet irradiation. Appl. Microbiol. 28:151–153

    PubMed  CAS  Google Scholar 

  • McCullough WG, Merkal RS (1982) Structure of mycobactin. J. Curr. Microbiol. 7:337–341

    Article  CAS  Google Scholar 

  • McSwiggan DA, Collins CH (1974) The isolation of M. kansasii and M. xenopi from water systems. Tubercle. 55:291–297

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, Schroder KH, Amadio GE, Anz W, Chaparas S, Engel HW, Jenkins PA, Kappler W, Kleeberg HH, Kubala E, Kubin M, Lauterbach D, Lind A, Magnusson M, Mikova Z, Pattyn SR, Schaefer WB, Stanford JL, Tsukamura M, Wayne LG, Willers I, Wolinsky E (1974) A co-operative numerical analysis of nonscoto- and nonphotochromogenic slowly growing mycobacteria. J. Gen. Microbiol. 83:207–235

    PubMed  CAS  Google Scholar 

  • Meissner PS, Falkinham JO, III (1984) Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum. J. Bacteriol. 157:669–672

    PubMed  CAS  Google Scholar 

  • Meissner PS, Falkinham JO, III (1986) Plasmid DNA profiles as epidemiological markers for clinical and environmental isolates of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. J. Infect. Dis. 153: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Merkal RS, Crawford JA (1979) Heat inactivation of Mycobacterium avium-Mycobacterium intracellulare complex organisms in aqueous suspension. Appl. Environ. Microbiol. 38:827–830

    PubMed  CAS  Google Scholar 

  • Merkal RS, Crawford JA, Whipple DL (1979) Heat inactivation of Mycobacterium avium-Mycobacterium intracellulare complex organisms in meat products. Appl. Environ. Microbiol. 38:831–835

    PubMed  CAS  Google Scholar 

  • Merkal RS, Curran BJ (1974) Growth and metabolic characteristics of Mycobacterium paratuberculosis. Appl. Microbiol. 28:276–279

    PubMed  CAS  Google Scholar 

  • Merkal RS, Larsen AB, Kopecky KE, Ness RD (1968) Comparison of Examination and Test Methods for Early Detection of Paratuberculous Cattle. Am. J. Vet. Res. 29:1533–1538

    PubMed  CAS  Google Scholar 

  • Merkal RS, McCullough WG (1982) A new mycobactin, mycobactin J, from Mycobacterium paratuberculosis. Current Microbiol. 7:333–335

    Article  Google Scholar 

  • Merritt RW, Benbow ME, Small PLC (2005) Unraveling an emerging disease associated with disturbed aquatic environments: the case of Buruli ulcer. Front Ecol. Environ. 3:323–331

    Article  Google Scholar 

  • Mijs W, de Haas P, Rossau R, Van der Laan T, Rigouts L, Portaels F, van Soolingen D (2002a) Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp avium for bird-type isolates and 'M-avium subsp hominissuis' for the human/porcine type of M-avium. Int. J. Syst. Evol. Microbiol. 52:1505–1518

    Article  CAS  Google Scholar 

  • Mijs W, De Vreese K, Devos A, Pottel H, Valgaeren A, Evans C, Norton J, Parker D, Rigouts L, Portaels F, Reischl U, Watterson S, Pfyffer G, Rossau R (2002b) Evaluation of a commercial line probe assay for identification of Mycobacterium species from liquid and solid culture. Eur. J. Clin. Microbiol. Infect. Dis. 21:794–802

    Article  PubMed  CAS  Google Scholar 

  • Mills JA, McNeil MR, Belisle JT, Jacobs WR, Jr., Brennan PJ (1994) Loci of Mycobacterium avium ser2 gene cluster and their functions. J. Bacteriol. 176:4803–4808

    PubMed  CAS  Google Scholar 

  • Miltner E, Daroogheh K, Mehta PK, Cirillo SL, Cirillo JD, Bermudez LE (2005) Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium. Infect. Immun. 73:4214–4221

    Article  PubMed  CAS  Google Scholar 

  • Mirando WS, Shiratsuchi H, Tubesing K, Toba H, Ellner JJ, Elmets CA (1992) Ultraviolet-Irradiated Monocytes Efficiently Inhibit the Intracellular Replication of Mycobacterium-Avium-Intracellulare. J. Clin. Invest. 89:1282–1287

    Article  PubMed  CAS  Google Scholar 

  • Moravkova M, Hlozek P, Beran V, Pavlik I, Preziuso S, Cuteri V, Bartos M (2007) Strategy for the detection and differentiation of Mycobacterium avium species in isolates and heavily infected tissues. Research in Veterinary Science (Article in press, available online at www.sciencedirect.com)

  • Mura M, Bull TJ, Evans H, Sidi-Boumedine K, McMinn L, Rhodes G, Pickup R, Hermon-Taylor J (2006) Replication and long-term persistence of bovine and human strains of Mycobacterium avium subsp. paratuberculosis within Acanthamoeba polyphaga. Appl. Environ. Microbiol. 72:854–859

    Article  PubMed  CAS  Google Scholar 

  • Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ (2006) Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int. J. Syst. Evol. Microbiol. 56:2049–2054

    Article  PubMed  CAS  Google Scholar 

  • Murohashi T, Yoshida K (1968) Effect of ultraviolet irradiation on the acid-fastness of difficult to culture and unculturable mycobacteria. Am. Rev. Respir. Dis. 97:306–310

    PubMed  CAS  Google Scholar 

  • Nieminen T, Pakarinen J, Tsitko I, Salkinoja-Salonen M, Breitenstein A, Ali-Vehmas T, Neubauer P (2006) 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J. Microbiol. Methods. 67:44–55

    Article  PubMed  CAS  Google Scholar 

  • Norby B, Fosgate GT, Manning EJ, Collins MT, Roussel AJ (2007) Environmental mycobacteria in soil and water on beef ranches: Association between presence of cultivable mycobacteria and soil and water physicochemical characteristics. Vet. Microbiol. 124:153–159

    Article  PubMed  CAS  Google Scholar 

  • Norton CD, LeChevallier MW, Falkinham JO, III (2004) Survival of Mycobacterium avium in a model distribution system. Water Res. 38:1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Nyka W (1974) Studies on the effect of starvation on mycobacteria. Infect. Immun. 9:843–850

    PubMed  CAS  Google Scholar 

  • O’Brien RJ, Geiter LJ, Snider DE (1987) The Epidemiology of Nontuberculous Mycobacterial Diseases in the United-States – Results from A National Survey. Am. Rev. Respir. Dis. 135:1007–1014

    PubMed  Google Scholar 

  • Oga M, Arizono T, Takasita M, Sugioka Y (1993) Evaluation of the Risk of Instrumentation As A Foreign-Body in Spinal Tuberculosis – Clinical and Biologic Study. Spine. 18:1890–1894

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE, Jorgensen JB, Nansen P (1985) On the Reduction of Mycobacterium-Paratuberculosis in Bovine Slurry Subjected to Batch Mesophilic Or Thermophilic Anaerobic-Digestion. Agric. Wastes. 13:273–280

    Article  Google Scholar 

  • Pai HH, Chen WC, Peng CF (2003) Isolation of non-tuberculous mycobacteria from hospital cockroaches (Periplaneta americana). J. Hosp. Infect. 53:224–228

    Article  PubMed  CAS  Google Scholar 

  • Pang Y, Brown BA, Steingrube VA, Wallace RJ, Roberts MC (1994) Tetracycline Resistance Determinants in Mycobacterium and Streptomyces Species. Antimicrob. Agents Chemother. 38:1408–1412

    PubMed  CAS  Google Scholar 

  • Pankhurst CL, Johnson NW, Woods RG (1998) Microbial contamination of dental unit waterlines: the scientific argument. Int. Dent. J. 48:359–368

    Article  PubMed  CAS  Google Scholar 

  • Parent LJ, Salam MM, Appelbaum PC, Dossett JH (1995) Disseminated Mycobacterium-Marinum Infection and Bacteremia in A Child with Severe Combined Immunodeficiency. Clin. Infect. Dis. 21:1325–1327

    Article  PubMed  CAS  Google Scholar 

  • Parker BC, Ford MA, Gruft H, Falkinham JO, III (1983) Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am. Rev. Respir. Dis. 128: 652–656

    PubMed  CAS  Google Scholar 

  • Pavlik I, Horvathova A, Dvorska L, Bartl J, Svastova P, du Maine R, Rychlik I (1999) Standardisation of restriction fragment length polymorphism analysis for Mycobacterium avium subspecies paratuberculosis. J. Microbiol. Methods. 38:155–167

    Article  PubMed  CAS  Google Scholar 

  • Pavlik I, Jahn P, Moravkova M, Matlova L, Treml F, Cizek A, Nesnalova E, Dvorska-Bartosova L, Halouzka R (2008) Lung tuberculosis in a horse caused by Mycobacterium avium subsp avium of serotype 2: a case report. Veterinarni Medicina 53:111–116

    Google Scholar 

  • Pavlik I, Matlova L, Dvorska L, Bartl J, Oktabcova L, Docekal J, Parmova I (2003) Tuberculous lesions in pigs in the Czech Republic during 1990–1999: occurrence, causal factors and economic losses. Veterinarni Medicina 48:113–125

    Google Scholar 

  • Pavlik I, Matlova L, Dvorska L, Shitaye JE, Parmova I (2005a) Mycobacterial infections in cattle and pigs caused by Mycobacterium avium complex members and atypical mycobacteria in the Czech Republic during 2000–2004. Veterinarni Medicina 50:281–290

    Google Scholar 

  • Pavlik I, Matlova L, Gilar M, Bartl J, Parmova I, Lysak F, Alexa M, Dvorska-Bartosova L, Svec V, Vrbas V, Horvathova A (2007) Isolation of conditionally pathogenic mycobacteria from the environment of one pig farm and the effectiveness of preventive measures between 1997 and 2003. Veterinarni Medicina 52:392–404

    CAS  Google Scholar 

  • Pavlik I, Rozsypalova Z, Vesely T, Bartl J, Matlova L, Vrbas V, Valent L, Rajsky D, Mracko I, Hirko M, Miskovic P (2000a) Control of paratuberculosis in five cattle farms by serological tests and faecal culture during the period 1990–1999. Veterinarni Medicina 45:61–70

    Google Scholar 

  • Pavlik I, Svastova P, Bartl J, Dvorska L, Rychlik I (2000b) Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry. Clin. Diagn. Lab. Immunol. 7:212–217

    PubMed  CAS  Google Scholar 

  • Pavlik I, Trcka I, Parmova I, Svobodova J, Melicharek I, Nagy G, Cvetnic Z, Ocepek M, Pate M, Lipiec M (2005b) Detection of bovine and human tuberculosis in cattle and other animals in six Central European countries during the years 2000–2004. Veterinarni Medicina 50:291–299

    Google Scholar 

  • Pelikan M, Mikova Z, Kaustova J, Kubin M (1973) Aerosol from water for industrial purposes – a possible transmission factor for infection by atypical mycobacteria (in Czech:Aerosol z užitkové vody jako pravděpodobný faktor přenosu při infekci atypickými mykobakteriemi). Ceskoslovenska hygiena. 6:316–323

    Google Scholar 

  • Peters M, Muller C, Ruschgerdes S, Seidel C, Gobel U, Pohle HD, Ruf B (1995) Isolation of Atypical Mycobacteria from Tap Water in Hospitals and Homes – Is This A Possible Source of Disseminated Mac Infection in Aids Patients. J. Infect. 31:39–44

    Article  PubMed  CAS  Google Scholar 

  • Phillips MS, von Reyn CF (2001) Nosocomial infections due to nontuberculous mycobacteria. Clin. Infect. Dis. 33:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Picardeau M, Prod’Hom G, Raskine L, LePennec MP, Vincent V (1997) Genotypic characterization of five subspecies of Mycobacterium kansasii. J. Clin. Microbiol. 35:25–32

    PubMed  CAS  Google Scholar 

  • Picardeau M, Varnerot A, Rauzier J, Gicquel B, Vincent V (1996) Mycobacterium xenopi IS1395, a novel insertion sequence expanding the IS256 family. Microbiology-Uk. 142:2453–2461

    Article  CAS  Google Scholar 

  • Picardeau M, Vincent V (1995) Development of A Species-Specific Probe for Mycobacterium-Xenopi. Res. Microbiol. 146:237–243

    Article  PubMed  CAS  Google Scholar 

  • Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, Hurley M, Hermon-Taylor J (2005) Mycobacterium avium subsp paratuberculosis in the catchment area and water of the river Taff in South Wales, United Kingdom, an its potential relationship to clustering of Crohn’s disease cases in the city of Cardiff. Appl. Environ. Microbiol. 71:2130–2139

    Article  PubMed  CAS  Google Scholar 

  • Pickup RW, Rhodes G, Bull TJ, Arnott S, Sidi-Boumedine K, Hurley M, Hermon-Taylor J (2006) Mycobacterium avium subsp. paratuberculosis in lake catchments, in river water abstracted for domestic use, and in effluent from domestic sewage treatment works: diverse opportunities for environmental cycling and human exposure. Appl. Environ. Microbiol. 72:4067–4077

    Article  PubMed  CAS  Google Scholar 

  • Pitulle C, Dorsch M, Kazda J, Wolters J, Stackebrandt E (1992) Phylogeny of Rapidly Growing Members of the Genus Mycobacterium. Int. J. Syst. Bacteriol. 42:337–343

    Article  PubMed  CAS  Google Scholar 

  • Plum G, Brenden M, Clark-Curtiss JE, Pulverer G (1997) Cloning, sequencing, and expression of the mig gene of Mycobacterium avium, which codes for a secreted macrophage-induced protein. Infect. Immun. 65: 4548–4557

    PubMed  CAS  Google Scholar 

  • Portaels F, Elsen P, Guimaraes-Peres A, Fonteyne PA, Meyers WM (1999) Insects in the transmission of Mycobacterium ulcerans infection. Lancet. 353:986–986

    Article  PubMed  CAS  Google Scholar 

  • Portaels F, Fissette K, De Ridder K, Macedo PM, De Muynck A, Silva MT (1988a) Effects of freezing and thawing on the viability and the ultrastructure of in vivo grown mycobacteria. Int. J. Lepr. Other Mycobact. Dis. 56:580–587

    PubMed  CAS  Google Scholar 

  • Portaels F, Larsson L, Smeets P (1988b) Isolation of Mycobacteria from Healthy-Persons Stools. Int. J. Lepr. Other Mycobact. Dis. 56:468–471

    PubMed  CAS  Google Scholar 

  • Portaels F, Pattyn SR (1982) Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. (Paris). 133:213–221

    CAS  Google Scholar 

  • Poupart P, Coene M, Vanheuverswyn H, Cocito C (1993) Preparation of A Specific Rna Probe for Detection of Mycobacterium-Paratuberculosis and Diagnosis of Johnes Disease. J. Clin. Microbiol. 31:1601–1605

    PubMed  CAS  Google Scholar 

  • Powell BL, Steadham JE (1981) Improved technique for isolation of Mycobacterium kansasii from water. J. Clin. Microbiol. 13:969–975

    PubMed  Google Scholar 

  • Prukner-Radovcic E, Culjak K, Sostaric B, Mazija H, Sabocanec R (1998) Generalised tuberculosis in pheasants at a commercial breeding farm. Zeitschrift fur Jagdwissenschaft. 44: 33–39

    Article  Google Scholar 

  • Raizman EA, Wells SJ, Godden SM, Bey RF, Oakes MJ, Bentley DC, Olsen KE (2004) The distribution of Mycobacterium avium ssp. paratuberculosis in the environment surrounding Minnesota dairy farms. J. Dairy Sci. 87:2959–2966

    Article  PubMed  CAS  Google Scholar 

  • Razavi B, Cleveland MG (2000) Cutaneous infection due to Mycobacterium kansasii. Diagn. Microbiol. Infect. Dis. 38:173–175

    Article  PubMed  CAS  Google Scholar 

  • Richards WD (1981) Effects of physiol and chemical factors on the viability of Mycobacterium paratuberculosis. J. Clin. Microbiol. 14:587–588

    PubMed  CAS  Google Scholar 

  • Rowe MT, Grant IR (2006) Mycobacterium avium ssp. paratuberculosis and its potential survival tactics. Lett. Appl. Microbiol. 42:305–311

    Article  PubMed  CAS  Google Scholar 

  • Russell AD (1999) Bacterial resistance to disinfectants: present knowledge and future problems. J. Hosp. Infect. 43:S57-S68

    Article  PubMed  Google Scholar 

  • Safranek TJ, Jarvis WR, Carson LA, Cusick LB, Bland LA, Swenson JM, Silcox VA (1987) Mycobacterium-Chelonae Wound Infections After Plastic-Surgery Employing Contaminated Gentian-Violet Skin-Marking Solution. N. Engl. J. Med. 317:197–201

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MW, Dargatz DA, Garry FB (2000) Biosecurity practices of beef cow-calf producers. J. Am. Vet. Med. Assoc. 217:185–189

    Article  PubMed  CAS  Google Scholar 

  • Sastry V, Brennan PJ (1995) Cutaneous Infections with Rapidly Growing Mycobacteria. Clin. Dermatol. 13:265–271

    Article  Google Scholar 

  • Schroder KH, Juhlin I (1977) Mycobacterium-Malmoense Sp-Nov. Int. J. Syst. Bacteriol. 27:241–246

    Article  Google Scholar 

  • Schulze-Robbecke R, Buchholtz K (1992) Heat susceptibility of aquatic mycobacteria. Appl. Environ. Microbiol. 58:1869–1873

    PubMed  CAS  Google Scholar 

  • Schulze-Robbecke R, Fischeder R (1989) Mycobacteria in biofilms. Zentralbl. Hyg. Umweltmed. 188:385–390

    PubMed  CAS  Google Scholar 

  • Schwabacher H (1959) A strain of Mycobacterium isolated from skin lesions of a cold-blooded animal, Xenopus laevis, and its relation to atypical acid-fast bacilli occurring in man. J. Hyg. (Lond). 57:57–67

    Article  CAS  Google Scholar 

  • Shitaye JE, Matlova L, Horvathova A, Moravkova M, Dvorska-Bartosova L, Trcka I, Lamka J, Treml F, Vrbas V, Pavlik I (2008a) Diagnostic testing of different stages of avian tuberculosis in naturally infected hens (Gallus domesticus) by the tuberculin skin and rapid agglutination tests, faecal and egg examinations. Veterinarni Medicina 53:101–110

    Google Scholar 

  • Shitaye JE, Matlova L, Horvathova A, Moravkova M, Dvorska-Bartosova L, Treml F, Lamka J, Pavlik I (2008b) Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Vet. Microbiol. 127:155–164

    Article  PubMed  CAS  Google Scholar 

  • Skovgaard N (2007) New trends in emerging pathogens. Int. J. Food Microbiol. 120:217–224

    Article  PubMed  Google Scholar 

  • Slosarek M, Kubin M, Jaresova M (1993) Water-borne household infections due to Mycobacterium xenopi. Cent. Eur. J. Public Health. 1:78–80

    PubMed  CAS  Google Scholar 

  • Smith MB, Schnadig VJ, Boyars MC, Woods GL (2001) Clinical and pathologic features of Mycobacterium fortuitum infections. An emerging pathogen in patients with AIDS. Am. J. Clin. Pathol. 116:225–232

    Article  PubMed  CAS  Google Scholar 

  • Sniadack DH, Ostroff SM, Karlix MA, Smithwick RW, Schwartz B, Sprauer MA, Silcox VA, Good RC (1993) A Nosocomial Pseudo-Outbreak of Mycobacterium-Xenopi Due to A Contaminated Potable Water-Supply – Lessons in Prevention. Infect. Control Hosp. Epidemiol. 14:636–641

    Article  PubMed  CAS  Google Scholar 

  • Snow GA (1965) Structure of Mycobactin P A Growth Factor for Mycobacterium Johnei and Significance of Its Iron Complex. Biochem. J. 94:160--165

    PubMed  CAS  Google Scholar 

  • Sompolinsky D, Lagziel A, Naveh D, Yankilevitz T (1978) Mycobacterium-Haemophilum Sp-Nov, A New Pathogen of Humans. Int. J. Syst. Bacteriol. 28:67–75

    Article  Google Scholar 

  • Speight EL, Williams HC (1997) Fish tank granuloma in a 14-month-old girl. Pediatr. Dermatol. 14:209–212

    Article  PubMed  CAS  Google Scholar 

  • Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC (1996) Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods. J. Clin. Microbiol. 34:296–303

    PubMed  CAS  Google Scholar 

  • Stahl DA, Urbance JW (1990) The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172: 116–124

    PubMed  CAS  Google Scholar 

  • Steed KA, Falkinham JO, III (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 72:4007–4011

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Birkness K, White E, Fields B, Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 64:2256–2261

    PubMed  CAS  Google Scholar 

  • Strahl ED, Gillaspy GE, Falkinham JO, III (2001) Fluorescent acid-fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth. Appl. Environ. Microbiol. 67:4432–4439

    Article  PubMed  CAS  Google Scholar 

  • Stuart P (1965) Vaccination Against Johnes Disease in Cattle Exposed to Experimental Infection. Br. Vet. J. 121:289–318

    PubMed  CAS  Google Scholar 

  • Sung NM, Collins MT (2003) Variation in resistance of Mycobacterium paratuberculosis to acid environments as a function of culture medium. Appl. Environ. Microbiol. 69:6833–6840

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Kiss KK, Varnai I (1982) Epidemic pulmonary infection associated with Mycobacterium xenopi indigenous in sewage-sludge. Acta Microbiol. Acad. Sci. Hung. 29:263–266

    PubMed  CAS  Google Scholar 

  • Taylor RH, Falkinham JO, III, Norton CD, LeChevallier MW (2000) Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl. Environ. Microbiol. 66:1702–1705

    Article  PubMed  CAS  Google Scholar 

  • Tenant R, Bermudez LE (2006) Mycobacterium avium genes upregulated upon infection of Acanthamoeba castellanii demonstrate a common response to the intracellular environment. Curr. Microbiol. 52:128–133

    Article  PubMed  CAS  Google Scholar 

  • Thoen CO, Steele JH (1995) Mycobacterium bovis infection in animals and humans. Iowa State University Press, 1st ed., 355 pp

    Google Scholar 

  • Thoen CO, Steele JH, Gilsdorf MJ (2006) Mycobacterium bovis infection in animals and humans. 2nd ed., Blackwell Publishing Professional, Ames, Iowa, USA, 317 pp

    Google Scholar 

  • Thomas V, McDonnell G (2007) Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett. Appl. Microbiol. 45:349–357

    Article  PubMed  CAS  Google Scholar 

  • Thomsen VO, Andersen AB, Miorner H (2002) Incidence and clinical significance of non-tuberculous mycobacteria isolated from clinical specimens during a 2-y nationwide survey. Scand. J. Infect. Dis. 34:648–653

    Article  PubMed  Google Scholar 

  • Thorel MF, Falkinham JO, Moreau RG (2004) Environmental mycobacteria from alpine and subalpine habitats. Fems Microbiol. Ecol. 49:343–347

    Article  PubMed  CAS  Google Scholar 

  • Thorel MF, Huchzermeyer H, Weiss R, Fontaine JJ (1997) Mycobacterium avium infections in animals. Literature review. Vet. Res. 28:439–447

    CAS  Google Scholar 

  • Thorel MF, Huchzermeyer HF, Michel AL (2001) Mycobacterium avium and Mycobacterium intracellulare infection in mammals. Rev. Sci. Tech. 20:204–218

    PubMed  CAS  Google Scholar 

  • Thorel MF, Krichevsky M, Levy-Frebault VV (1990) Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int. J. Syst. Bacteriol. 40:254–260

    Article  PubMed  CAS  Google Scholar 

  • Toman M, Faldyna M, Pavlik I (2003) Immunological characteristics of cattle with Mycobacterium avium subsp paratuberculosis infection. Veterinarni Medicina 48:147–154

    Google Scholar 

  • Torkko P, Suomalainen S, Iivanainen E, Suutari M, Tortoli E, Paulin L, Katila ML (2000) Mycobacterium xenopi and related organisms isolated from stream waters in Finland and description of Mycobacterium botniense sp nov. Int. J. Syst. Evol. Microbiol. 50:283–289

    Article  PubMed  CAS  Google Scholar 

  • Tortoli E (2003) Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin. Microbiol. Rev. 16:319–354

    Article  PubMed  CAS  Google Scholar 

  • Tortoli E, Bartoloni A, Bottger EC, Emler S, Garzelli C, Magliano E, Mantella A, Rastogi N, Rindi L, Scarparo C, Urbano P (2001) Burden of unidentifiable mycobacteria in a reference laboratory. J. Clin. Microbiol. 39:4058–4065

    Article  PubMed  CAS  Google Scholar 

  • Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R, Garzelli C, Kroppenstedt RM, Lari N, Mattei R, Mariottini A, Mazzarelli G, Murcia MI, Nanetti A, Piccoli P, Scarparo C (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int. J. Syst. Evol. Microbiol. 54:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Torvinen E, Meklin T, Torkko P, Suomalainen S, Reiman M, Katila ML, Paulin L, Nevalainen A (2006) Mycobacteria and fungi in moisture-damaged building materials. Appl. Environ. Microbiol. 72:6822–6824

    Article  PubMed  CAS  Google Scholar 

  • Tsintzou A, Vantarakis A, Pagonopoulou O, Athanassiadou A, Papapetropoulou M (2000) Environmental mycobacteria in drinking water before and after replacement of the water distribution network. Water Air Soil Pollut. 120:273–282

    Article  CAS  Google Scholar 

  • Tsukamura M (1963) Modification of ultraviolet-induced mutation frequency and survival in Mycobacterium avium by pre-irradiation incubation in phosphorus-deficient medium. Jpn. J. Microbiol. 11:97–104

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Dawson DJ (1981) An attempt to induce Mycobacterium intracellulare from Mycobacterium scrofulaceum by ultraviolet irradiation. Microbiol. Immunol. 25:531–535

    PubMed  CAS  Google Scholar 

  • Tsukamura M, Kita N, Otsuka W, Shimoide H (1983) A study of the taxonomy of the Mycobacterium nonchromogenicum complex and report of six cases of lung infection due to Mycobacterium nonchromogenicum. Microbiol. Immunol. 27:219–236

    PubMed  CAS  Google Scholar 

  • Tuffley RE, Holbeche JD (1980) Isolation of the Mycobacterium avium-M. intracellulare-M. scrofulaceum complex from tank water in Queensland, Australia. Appl. Environ. Microbiol. 39:48–53

    PubMed  CAS  Google Scholar 

  • Turenne CY, Wallace R, Jr., Behr MA (2007) Mycobacterium avium in the postgenomic era. Clin. Microbiol. Rev. 20:205–229

    Article  PubMed  CAS  Google Scholar 

  • Twort FW, Ingram GLY (1912) A method for isolating and cultivating the Mycobacterium enteritidis chronicae pseudotuberculosae bovis and some experiments on the preparation of a diagnostic vaccine for pseudotuberculosis enteritis of bovine. Proc. Roy. Soc. 84:517–543

    Article  Google Scholar 

  • Ulicna L, Sytarova J, Kazda J (1968) Mycobacterium marinum (balnei)- agents of TB cutis verrucosa in coal workers. Rozhl. Tuberk. 28:695–698

    Google Scholar 

  • Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F (2005) Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol. Rev. 29:911–934

    Article  PubMed  CAS  Google Scholar 

  • van Coppenraet LES, Kuijper EJ, Lindeboom JA, Prins JM, Claas ECJ (2005) Mycobacterium haemophilum and lymphadenitis in children. Emerg. Infect. Dis. 11: 62–68

    Google Scholar 

  • van Soolingen D, Bauer J, Ritacco V, Leao SC, Pavlik I, Vincent V, Rastogi N, Gori A, Bodmer T, Garzelli C, Garcia MJ (1998) IS1245 restriction fragment length polymorphism typing of Mycobacterium avium isolates: proposal for standardization. J. Clin. Microbiol. 36:3051–3054

    PubMed  Google Scholar 

  • Vishnevskii PP, Mamatsev EG, Chernyshev VV, Chernyshev NS (1940) The viability of the bacillus of Johne’s disease (in Russian). Sovyet Vet. 11–12:89–93

    Google Scholar 

  • von Reyn CF, Waddell RD, Eaton T, Arbeit RD, Maslow JN, Barber TW, Brindle RJ, Gilks CF, Lumio J, Lahdevirta J (1993) Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 31:3227–3230

    Google Scholar 

  • Vuorio R, Andersson MA, Rainey FA, Kroppenstedt RM, Kampfer P, Busse HJ, Viljanen M, Salkinoja-Salonen M (1999) A new rapidly growing mycobacterial species, Mycobacterium morale sp. nov., isolated from the indoor walls of a children’s day care centre. Int. J. Syst. Bacteriol. 49:25–35

    Article  PubMed  CAS  Google Scholar 

  • Wallace RJ (1994) Recent Changes in Taxonomy and Disease Manifestations of the Rapidly Growing Mycobacteria. Eur. J. Clin. Microbiol. Infect. Dis. 13:953–960

    Article  PubMed  Google Scholar 

  • Wallace RJ, Brown BA (1998) Catheter sepsis due to Mycobacterium chelonae. J. Clin. Microbiol. 36:3444–3444

    PubMed  Google Scholar 

  • Wallace RJ, Brown BA, Griffith DE (1998) Nosocomial outbreaks pseudo-outbreaks caused by nontuberculous mycobacteria. Ann. Rev. Microbiol. 52:453–490

    Article  CAS  Google Scholar 

  • Wallace RJ, Zhang YS, Brown BA, Fraser V, Mazurek GH, Maloney S (1993) Dna Large Restriction Fragment Patterns of Sporadic and Epidemic Nosocomial Strains of Mycobacterium-Chelonae and Mycobacterium-Abscessus. J. Clin. Microbiol. 31:2697–2701

    PubMed  CAS  Google Scholar 

  • Walsh SE, Maillard JY, Russell AD, Hann AC (2001) Possible mechanisms for the relative efficacies of ortho-phthalaldehyde and glutaraldehyde against glutaraldehyde-resistant Mycobacterium chelonae. J. Appl. Microbiol. 91:80–92

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG (1985) The “atypical” mycobacteria: recognition and disease association. Crit. Rev. Microbiol. 12:185–222

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG, Sramek HA (1992) Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin. Microbiol. Rev. 5:1–25

    PubMed  CAS  Google Scholar 

  • Wells SJ (2000) Biosecurity on dairy operations: hazards and risks. J. Dairy Sci. 83:2380–2386

    Article  PubMed  CAS  Google Scholar 

  • Wells SJ, Wagner BA (2000) Herd-level risk factors for infection with Mycobacterium paratuberculosis in US dairies and association between familiarity of the herd manager with the disease or prior diagnosis of the disease in that herd and use of preventive measures. J. Am. Vet. Med. Assoc. 216:1450–1457

    Article  PubMed  CAS  Google Scholar 

  • Wendt SL, George KL, Parker BC, Gruft H, Falkinham JO, III (1980) Epidemiology of infection by nontuberculous Mycobacteria. III. Isolation of potentially pathogenic mycobacteria from aerosols. Am. Rev. Respir. Dis. 122:259–263

    PubMed  CAS  Google Scholar 

  • Wenger JD, Spika JS, Smithwick RW, Pryor V, Dodson DW, Carden GA, Klontz KC (1990) Outbreak of Mycobacterium-Chelonae Infection Associated with Use of Jet Injectors. JAMA. 264:373–376

    Article  PubMed  CAS  Google Scholar 

  • Whan L, Ball HJ, Grant IR, Rowe MT (2005a) Development of an IMS-PCR assay for the detection of Mycobacterium avium ssp paratuberculosis in water. Lett. Appl. Microbiol. 40:269–273

    Article  PubMed  CAS  Google Scholar 

  • Whan L, Ball HJ, Grant IR, Rowe MT (2005b) Occurrence of Mycobacterium avium subsp. paratuberculosis in untreated water in Northern Ireland. Appl. Environ. Microbiol. 71:7107–7112

    Article  PubMed  CAS  Google Scholar 

  • Whan L, Grant IR, Rowe MT (2006) Interaction between Mycobacterium avium subsp. paratuberculosis and environmental protozoa. BMC. Microbiol. 6:63-

    Article  PubMed  CAS  Google Scholar 

  • Whan LB, Grant IR, Ball HJ, Scott R, Rowe MT (2001) Bactericidal effect of chlorine on Mycobacterium paratuberculosis in drinking water. Lett. Appl. Microbiol. 33: 227–231

    Article  PubMed  CAS  Google Scholar 

  • Whittington RJ, Marsh IB, Reddacliff LA (2005) Survival of Mycobacterium avium subsp. paratuberculosis in dam water and sediment. Appl. Environ. Microbiol. 71: 5304–5308

    CAS  Google Scholar 

  • Whittington RJ, Marsh IB, Taylor PJ, Marshall DJ, Taragel C, Reddacliff LA (2003) Isolation of Mycobacterium avium subsp. paratuberculosis from environmental samples collected from farms before and after destocking sheep with paratuberculosis. Aust. Vet. J. 81:559–563

    Article  PubMed  CAS  Google Scholar 

  • Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA (2004) Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol. 70:2989–3004

    Article  PubMed  CAS  Google Scholar 

  • Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int. J. Syst. Evol. Microbiol. 51: 1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Wilson J (1960) Avian tuberculosis. An account of the disease in poultry, captive birds and wild birds. British Veterinary Journal. 116:380–393

    Google Scholar 

  • Wolinsky E, Schaefer WB (1973) Proposed Numbering Scheme for Mycobacterial Serotypes by Agglutination. Int. J. Syst. Bacteriol. 23:182–183

    Article  Google Scholar 

  • Woo PC, Leung KW, Wong SS, Chong KT, Cheung EY, Yuen KY (2002) Relatively alcohol-resistant mycobacteria are emerging pathogens in patients receiving acupuncture treatment. J. Clin. Microbiol. 40:1219–1224

    Article  PubMed  Google Scholar 

  • Woodley CL, David HL (1976) Effect of temperature on the rate of the transparent to opaque colony type transition in Mycobacterium avium. Antimicrob. Agents Chemother. 9:113–119

    PubMed  CAS  Google Scholar 

  • Wright EP, Collins CH, Yates MD (1985) Mycobacterium-Xenopi and Mycobacterium-Kansasii in A Hospital Water-Supply. J. Hosp. Infect. 6:175–178

    PubMed  CAS  Google Scholar 

  • Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B, Petrofsky M, Bildfell R, Bermudez LE (2006a) The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol. 8:806–814

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Danelishvili L, Wu M, MacNab M, Bermudez LE (2006b) Mycobacterium avium genes associated with the ability to form a biofilm. Appl. Environ. Microbiol. 72:819–825

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ross BC, Dwyer B (1993) Isolation of a DNA probe for identification of Mycobacterium kansasii, including the genetic subgroup. J. Clin. Microbiol. 31: 2769–2772

    PubMed  CAS  Google Scholar 

  • Yew WW, Wong PC, Woo HS, Yip CW, Chan CY, Cheng FB (1993) Characterization of Mycobacterium-Fortuitum Isolates from Sternotomy Wounds by Antimicrobial Susceptibilities, Plasmid Profiles, and Ribosomal Ribonucleic-Acid Gene Restriction Patterns. Diag. Microbiol. Infect. Dis. 17:111–117

    Article  CAS  Google Scholar 

  • Zhang YS, Rajagopalan M, Brown BA, Wallace RJ (1997) Randomly amplified polymorphic DNA PCR for comparison of Mycobacterium abscessus strains from nosocomial outbreaks. J. Clin. Microbiol. 35:3132–3139

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Section 3.1.3 was partially supported by the European Commission (PathogenCombat FOOD-CT-2005-007081 and ParaTBTools FP6-2004-FOOD-3B-023106) and by the Ministry of Agriculture of the Czech Republic (NAZV QH81065) and Sections 3.1 and 3.3 by the Ministry of Agriculture of the Czech Republic (NPV 1B53009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Pavlik , I. Pavlik or I. Pavlik CSc. .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pavlik, I., Falkinham, J., Kazda, J. (2009). Potentially Pathogenic Mycobacteria. In: The Ecology of Mycobacteria: Impact on Animal's and Human's Health. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9413-2_3

Download citation

Publish with us

Policies and ethics