Skip to main content

Involvement of Alpha-2 Domain in Prion Protein Conformationally-Induced Diseases

  • Chapter
Protein Folding and Misfolding: Neurodegenerative Diseases

Part of the book series: Focus on Structural Biology ((FOSB,volume 7))

  • 1141 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  PubMed  CAS  Google Scholar 

  2. Temussi PA, Masino L, Pastore A (2003) From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J 22:355–361

    Article  PubMed  CAS  Google Scholar 

  3. Blake C, Serpell L (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure 4:989–998

    Article  PubMed  CAS  Google Scholar 

  4. Thompson A, White AR, McLean C, Masters CL, Cappai R, Barrow CJ (2000) Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrP(C). J Neurosci Res 62:293–301

    Article  PubMed  CAS  Google Scholar 

  5. Tan SY, Pepys MB (1994) Amyloidosis. Histopathology 25:403–414

    Article  PubMed  CAS  Google Scholar 

  6. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273: 729–739

    Article  PubMed  CAS  Google Scholar 

  7. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC et al. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793

    Article  PubMed  CAS  Google Scholar 

  8. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  9. Harris DA (2003) Trafficking, turnover and membrane topology of PrP. Br Med Bull 66: 71–85

    Article  PubMed  CAS  Google Scholar 

  10. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111

    Article  PubMed  CAS  Google Scholar 

  11. Peters PJ, Mironov A Jr, Peretz D, van Donselaar E, Leclerc E, Erpel S, DeArmond SJ, Burton DR, Williamson RA, Vey M et al. (2003) Trafficking of prion proteins through a caveolae-mediated endosomal pathway. J Cell Biol 162:703–717

    Article  PubMed  CAS  Google Scholar 

  12. Harris DA (1998) Clathrin-coated vesicles and detergent-resistant rafts in prion biology. Bull Inst Pasteur 96: 207–212

    Article  Google Scholar 

  13. Caughey B, Raymond GJ, Ernst D, Race RR (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65:6597–6603

    PubMed  CAS  Google Scholar 

  14. Ivanova L, Barmada S, Kummer T, Harris DA (2001) Mutant prion proteins are partially retained in the endoplasmic reticulum. J Biol Chem 276:42409–42421

    Article  PubMed  CAS  Google Scholar 

  15. Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes. EMBO J 21:1031–1040

    Article  PubMed  CAS  Google Scholar 

  16. Ma J, Wollmann R, Lindquist S (2002) Neurotoxicity and Neurodegeneration When PrP Accumulates in the Cytosol. Science 298:1781–1785

    Article  PubMed  CAS  Google Scholar 

  17. Ma J, Lindquist S (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298:1785–1788

    Article  PubMed  CAS  Google Scholar 

  18. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease- resistant prion protein. Nature 370:471–474

    Article  PubMed  CAS  Google Scholar 

  19. Weissmann C, Aguzzi A (2005) Approaches to therapy of prion diseases. Annu Rev Med 56:321–344

    Article  PubMed  CAS  Google Scholar 

  20. Farquhar CF, Dickinson AG (1986) Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J Gen Virol 67: 463–473

    Article  PubMed  CAS  Google Scholar 

  21. Kimberlin RH, Walker CA (1986) Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 30:409–413

    PubMed  CAS  Google Scholar 

  22. Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67:643–650

    PubMed  CAS  Google Scholar 

  23. May BC, Fafarman AT, Hong SB, Rogers M, Deady LW, Prusiner SB, Cohen FE (2003) Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc Natl Acad Sci USA 100:3416–3421

    Article  PubMed  CAS  Google Scholar 

  24. Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, Colombo L, De Luigi A, Limido L, Suardi S, Rossi G et al. (2003) Evaluation of quinacrine treatment for prion diseases. J Virol 77:8462–8469

    Article  PubMed  CAS  Google Scholar 

  25. Caughey WS, Raymond LD, Horiuchi M., Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95:12117–12122

    Article  PubMed  CAS  Google Scholar 

  26. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    Article  PubMed  CAS  Google Scholar 

  27. Poli G, Ponti W, Carcassola G, Ceciliani F, Colombo L, Dall’Ara P, Gervasoni M, Giannino ML, Martino PA, Pollera C et al. (2003) In vitro evaluation of the anti-prionic activity of newly synthesized congo red derivatives. Arzneimittelforschung 53:875–888

    PubMed  CAS  Google Scholar 

  28. Adjou KT, Privat N, Demart S, Deslys JP, Seman M, Hauw JJ, Dormont D (2003) J Comp Pathol 122:3–8

    Google Scholar 

  29. Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR (1999) Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci USA 96:14529–14534

    Article  PubMed  CAS  Google Scholar 

  30. Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75:3453–3461

    Article  PubMed  CAS  Google Scholar 

  31. Soto C, Saborio GP, Permanne B (2000) Inhibiting the conversion of soluble amyloid-beta peptide into abnormally folded amyloidogenic intermediates: relevance for Alzheimer’s disease therapy. Acta Neurol Scand Suppl 176:90–95

    Article  PubMed  CAS  Google Scholar 

  32. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F, (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  PubMed  CAS  Google Scholar 

  33. Tagliavini F, Forloni G, Colombo L, Rossi G, Girala L, Canciani B, Angeretti N, Giampaolo L, Peressini E, Awan T et al. (2000) Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol 300:1309–1322

    Article  PubMed  CAS  Google Scholar 

  34. Ronga L, Langella E, Palladino P, Marasco D, Tizzano B, Saviano M, Pedone C, Improta R, Ruvo M (2007) Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments. Proteins 66:707–715

    Article  PubMed  CAS  Google Scholar 

  35. Forloni G, Varì MR, Colombo L, Bugiani O, Tagliavini F, Salmona M (2003) Prion disease: time for a therapy? Curr Med Chem Imun, Endoc Metab Agents 3:185–197

    Article  CAS  Google Scholar 

  36. Polymenidou M, Heppner FL, Pellicioli EC, Urich E, Miele G, Braun N, Wopfner F, Schatzl HM, Becher B, Aguzzi A (2004) Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proc Natl Acad Sci USA 101:14670–14676

    Article  PubMed  CAS  Google Scholar 

  37. Gilch S, Wopfner F, Renner-Muller I, Kremmer E, Bauer C, Wolf E, Brem G, Groschup MH, Schatzl HM (2003) Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J Biol Chem 278:18524–18531

    Article  PubMed  CAS  Google Scholar 

  38. Sigurdsson EM, Brown DR, Daniels M, Kascsak RJ, Kascsak R, Carp R, Meeker HC, Frangione B, Wisniewski T (2002) Immunization delays the onset of prion disease in mice. Am J Pathol 161:13–17

    PubMed  CAS  Google Scholar 

  39. Bade S, Frey A (2007) Potential of active and passive immunizations for the prevention and therapy of transmissible spongiform encephalopathies. Expert Rev Vaccines 6: 153–168

    Article  PubMed  CAS  Google Scholar 

  40. Horiuchi M, Caughey B (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J 18:3193–3203

    Article  PubMed  CAS  Google Scholar 

  41. Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA 98:9295–9299

    Article  PubMed  CAS  Google Scholar 

  42. Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM et al. (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412:739–743

    Article  PubMed  CAS  Google Scholar 

  43. Perrier V, Solassol J, Crozet C, Frobert Y, Mourton-Gilles C, Grassi J, Lehmann S (2004) Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation J Neurochem 89:454–463

    Google Scholar 

  44. Kim CL, Karino A, Ishiguro N, Shinagawa M, Sato M, Horiuchi M (2004) Cell-surface retention of PrPC by anti-PrP antibody prevents protease-resistant PrP formation. J Gen Virol 85:3473–3482

    Article  PubMed  CAS  Google Scholar 

  45. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Tréguer E, Rezaei H, Knossow M (2004) Insight into the PrPC ⇒ PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci USA 101:10254–10259

    Article  PubMed  CAS  Google Scholar 

  46. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240

    Article  PubMed  CAS  Google Scholar 

  47. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S et al. (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308: 1435–1439

    Article  PubMed  CAS  Google Scholar 

  48. Bosques CJ, Imperiali B (2003) The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc Natl Acad Sci USA 100:7593–7598.

    Article  PubMed  CAS  Google Scholar 

  49. Calzolai L, Lysek DA, Perez DR, Güntert P, Wüthrich K (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc Natl Acad Sci USA 102:651–655

    Article  PubMed  CAS  Google Scholar 

  50. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Güntert P et al. (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645

    Article  PubMed  CAS  Google Scholar 

  51. Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wüthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646–650

    Article  PubMed  CAS  Google Scholar 

  52. Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8:770–774

    Article  PubMed  CAS  Google Scholar 

  53. Jackson GS, Hosszu LLP, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible inter-conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937

    Article  PubMed  CAS  Google Scholar 

  54. Shaked GM, Shaked Y, Kariv-Inbal Z, Halimi M, Avraham I, Gabizon R (2001) A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J Biol Chem 276:31479–31482

    Article  PubMed  CAS  Google Scholar 

  55. Pan K-H, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  56. Huang Z, Prusiner SB, Cohen FE (1996) Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des 1:13–19

    Article  PubMed  CAS  Google Scholar 

  57. Frankenfield KN, Powers ET, Kelly JW (2005) Influence of the N-terminal domain on the aggregation properties of the prion protein. Protein Sci 14:2154–2166

    Article  PubMed  CAS  Google Scholar 

  58. Cordeiro Y, Kraineva J, Gomes MP, Lopes MH, Martins VR, Lima LM, Foguel D, Winter R, Silva JL (2005) The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation. Biophys J 89:2667–2676

    Article  PubMed  CAS  Google Scholar 

  59. Fioriti L, Quaglio E, Massignan T, Colombo L, Stewart RS, Salmona M, Harris DA, Forloni G, Chiesa R (2005) The neurotoxicity of prion protein (PrP) peptide 106–126 is independent of the expression level of PrP and is not mediated by abnormal PrP species. Mol Cell Neurosci 28:165–176

    Article  PubMed  CAS  Google Scholar 

  60. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Master CL, Barrow J, Collins SJ et al. (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 73:1557–1565

    Article  PubMed  CAS  Google Scholar 

  61. Gu Y, Fujioka H, Mishra RS, Li R, Singh N (2002) Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J Biol Chem 277:2275–2286

    Article  PubMed  CAS  Google Scholar 

  62. Haire LF, Whyte SM, Vasisht N, Gill AC, Verma C, Dodson EJ, Dodson GG, Bayley PM (2004) The crystal structure of the globular domain of sheep prion protein. J Mol Biol 336:1175–1183

    Article  PubMed  CAS  Google Scholar 

  63. Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J Biol Chem 272: 27517–27520.

    Article  PubMed  CAS  Google Scholar 

  64. Hornemann S, Glockshuber R (1998) A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc Natl Acad Sci USA 95:6010–6014

    Article  PubMed  CAS  Google Scholar 

  65. Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (2000) Aggregation and fibrillization of the recombinant human prion protein huPrP 90–231. Biochemistry 39: 424–431

    Article  PubMed  CAS  Google Scholar 

  66. Zou W-Q, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277:43942–43947

    Article  PubMed  CAS  Google Scholar 

  67. Langella E, Improta R, Barone V (2004) Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues. Biophys J 87:3623–3632

    Article  PubMed  CAS  Google Scholar 

  68. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199

    PubMed  CAS  Google Scholar 

  69. Wopfner F, Weidenhöfer G, Schneider R, von Brunn A, Gilch S, Schwarzl TF, Werner T, Schätz HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289:1163–1178

    Article  PubMed  CAS  Google Scholar 

  70. Minor DL Jr, Kim PS (1994) Measurement of the beta-sheet forming propensities of amino acids. Nature 367:660–663

    Article  Google Scholar 

  71. Welker E, Raymond LD, Scheraga HA, Caughey B (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277:33477–33481

    Article  PubMed  CAS  Google Scholar 

  72. Liu A, Riek R, Zahn R, Hornemann S, Glockshuber R, Wuthrich K (1999) Peptides and proteins in neurodegenerative disease: helix propensitiy of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy. Biopolymers 51: 145–152

    Article  PubMed  CAS  Google Scholar 

  73. Ziegler J, Sticht H, Marx UC, Muller W, Rosch P, Schwarzinger S (2003) CD and NMR studies of prion protein (PrP) helix 1. Novel implications for its role in the PrPC ⇒ PrPSc conversion process. J Biol Chem 278:50175–50181

    Article  PubMed  CAS  Google Scholar 

  74. Gallo M, Paludi D, Cicero DO, Chiovitti K, Millo E, Salis A, Damonte G, Corsaro A, Thellung S, Schettini G et al. (2005) Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: the disease associated D202N mutation destabilizes the helical conformation. Int J Immunopathol Pharmacol 18:95–112

    PubMed  CAS  Google Scholar 

  75. Winklhofer KF, Heske J, Heller U, Reintjes A, Muranyi IM, Tatzelt J (2003) Determinants of the in vivo folding of the prion protein. A bipartite function of helix 1 in folding and aggregation. J Biol Chem 278:14961–14970

    Article  PubMed  CAS  Google Scholar 

  76. Hirschberger T, Stork M, Schropp B, Winklhofer KF, Tatzelt J, Tavan P (2006) Structural instability of the prion protein upon M205S/R mutations revealed by molecular dynamics simulations. Biophys J 90:3908–3918

    Article  PubMed  CAS  Google Scholar 

  77. Brown DR, Guantieri V, Grasso G, Impellizzeri G, Pappalardo G, Rizzarelli E (2004) Copper(II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper(II) and the binding motif in C-terminal protein region. J Inorg Biochem 98:133–143

    Article  PubMed  CAS  Google Scholar 

  78. Tizzano B, Palladino P, De Capua A, Marasco D, Rossi F, Benedetti E, Pedone C, Ragone R, Ruvo M (2005) The human prion protein alpha2 helix: a thermodynamic study of its conformational preferences. Proteins 59:72–79

    Article  PubMed  CAS  Google Scholar 

  79. Ikeda K, Higo J (2003) Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property. Protein Sci 12:2542–2548

    Article  PubMed  CAS  Google Scholar 

  80. Riek R, Wider G, Billeter M, Hornemann S, Glockshuber R, Wütrich K (1998) Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property. Proc Natl Acad Sci USA 95:11667–11672

    Article  PubMed  CAS  Google Scholar 

  81. Salmona M, Morbin M, Massignan T, Colombo L, Mazzoleni G, Capobianco R, Diomede L, Thaler F, Mollica L., Musco G et al. (2003) Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein. J Biol Chem 278:48146–48153

    Article  PubMed  CAS  Google Scholar 

  82. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz- Schaeffer W et al. (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    Article  PubMed  CAS  Google Scholar 

  83. Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. Annu Rev Phys Chem 58:299–320

    Article  PubMed  CAS  Google Scholar 

  84. Luczkowski M, Kozlowski H, Stawikowski M, Rolka K, Gaggelli E, Valensin D, Valensin G (2002) Is a monomeric prion octapeptide repeat PHGGGWGQ specific ligand for Ca$2+$ Ions? J Chem Soc Dalton Trans 2269–2274

    Google Scholar 

  85. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL et al. (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry 40:8073–8084

    Article  PubMed  CAS  Google Scholar 

  86. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39:13760–13771

    Article  PubMed  CAS  Google Scholar 

  87. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J et al. (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001

    Article  PubMed  CAS  Google Scholar 

  88. Lippard SJ, Berg JM (1994) Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA

    Google Scholar 

  89. Bryce GF, Gurd FRN (1966) Visible spectra and optical rotatory properties of cupric ion complexes of L-histidine-containing peptides. J Biol Chem 241:122–129

    PubMed  CAS  Google Scholar 

  90. Sundberg RJ, Martin RB (1974) Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev 74:471–517

    Article  CAS  Google Scholar 

  91. Kramer ML, Kratzin HD, Schmidt B, Römer A, Windl O, Liemann S., Hornemann S, Kretzschmar H (2001) Prion protein binds copper within the physiological concentration range. J Biol Chem 276:16711–16719

    Article  PubMed  CAS  Google Scholar 

  92. Qin K, Yang Y, Mastrangelo P, Westaway D (2002) Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277:1981–1990

    Article  PubMed  CAS  Google Scholar 

  93. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Copper coordination in the full-length, recombinant prion protein. Biochemistry 42:6794–6803

    Article  PubMed  CAS  Google Scholar 

  94. Quaglio E, Chiesa R, Harris DA (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276: 11432–11438

    Article  PubMed  CAS  Google Scholar 

  95. Ricchelli F, Buggio R, Drago D, Salmona M, Forloni G, Negro A, Tognon G, Zatta P (2006) Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Straussler_Scheinker disease peptides in the presence of metal ions. Biochemistry 45: 6724–6732

    Article  PubMed  CAS  Google Scholar 

  96. Cereghetti GM, Schweiger A, Glockshuber R, van Doorslaer S (2003) Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases. Biophys J 84:1985–1997

    Article  PubMed  CAS  Google Scholar 

  97. Cervenakova L, Buetefisch C, Lee HS, Taller I, Stone G, Gibbs CJ Jr, Brown P, Hallett M, Goldfarb LG (1999) Novel PRNP sequence variant associated with familial encephalopathy. Am J Med Genet 88:653–656

    Article  PubMed  CAS  Google Scholar 

  98. Bütefisch CM, Gambetti P, Cervenakova L, Park K-Y, Hallett M, Goldfarb LG (2000) Inherited prion encephalopathy associated with the novel PRNP H187R mutation: a clinical study. Neurology 55:517–522

    PubMed  Google Scholar 

  99. Kuznetsov IB, Rackovsky S (2004) Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations. Protein Sci 13:3230–3244

    Article  PubMed  CAS  Google Scholar 

  100. Barducci A, Chelli R, Procacci P, Schettino V (2005) Misfolding pathways of the prion protein probed by molecular dynamics simulations. Biophys J 88:1334–1343

    Article  PubMed  CAS  Google Scholar 

  101. Kiachopoulos S, Bracher A, Winklhofer KF, Tatzelt J (2005) Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor. J Biol Chem 280:9320–9329

    Article  PubMed  CAS  Google Scholar 

  102. Gasset M, Baldwin MA, Lloyd DH, Gabriel J-M, Holtzman DM, Cohen F, Fletterick R, Prusiner SB (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci USA 89:10940–10944

    Article  PubMed  CAS  Google Scholar 

  103. Ronga L, Tizzano B, Palladino P, Ragone R, Urso E, Maffia M, Ruvo M, Benedetti E, Rossi F (2006) The prion protein: Structural features and related toxic peptides. Chem Biol Drug Des 68:139–147

    Article  PubMed  CAS  Google Scholar 

  104. Cobb NJ, Sönnichsen FD, Mchaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci USA 104:18946–18951

    Article  PubMed  CAS  Google Scholar 

  105. Fitzmaurice TJ, Burke DF, Hopkins L, Yang S, Yu S, Sy M-S, Thackray AM, Bujdoso R (2008) The stability and aggregation of ovine prion protein associated with classical and atypical scrapie correlates with the ease of unwinding of helix-2. Biochem J 409:367–375

    Article  PubMed  CAS  Google Scholar 

  106. Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci USA 104: 1510–1515

    Article  PubMed  CAS  Google Scholar 

  107. Ronga L, Palladino P, Saviano G, Tancredi T, Benedetti E, Ragone R, Rossi F (2007) NMR Structure and CD titration with metal cations of human prion alpha2-helix-related peptides. Bioinorg Chem Appl 2007:10720

    Google Scholar 

  108. Nandi PK, Nicole JC (2004) Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J Mol Biol 344:827–837

    Article  PubMed  CAS  Google Scholar 

  109. Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J Biol Chem 278:35592–35596.

    Article  PubMed  CAS  Google Scholar 

  110. Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B (2001) Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J 20:377–386

    Article  PubMed  CAS  Google Scholar 

  111. Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Doh-ura K (2006) Surface plasmon resonance analysis for the screening of anti-prion compounds. Biol Pharm Bull 29:927–932

    Article  PubMed  CAS  Google Scholar 

  112. Ronga L, Palladino P, Tizzano B, Marasco D, Benedetti E, Ragone R, Rossi F (2006) Effect of salts on the structural behavior of hPrP alpha2-helix-derived analogues: the counterion perspective. J Pept Sci 12:790–795

    Article  PubMed  CAS  Google Scholar 

  113. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    PubMed  CAS  Google Scholar 

  114. Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  PubMed  CAS  Google Scholar 

  115. Niedz RP, Evens TJ (2006) A solution to the problem of ion confounding in experimental biology. Nat Methods 3:417

    Google Scholar 

  116. Chen YR, Huang HB, Chyan CL, Shiao MS, Lin TH, Chen YC (2006) The Effect of Aβ Conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy. J Biochem (Tokyo) 139:733–740

    CAS  Google Scholar 

  117. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5

    Article  PubMed  CAS  Google Scholar 

  118. Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564:121–125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ronga, L., Palladino, P., Benedetti, E., Ragone, R., Rossi, F. (2009). Involvement of Alpha-2 Domain in Prion Protein Conformationally-Induced Diseases. In: Ovádi, J., Orosz, F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases. Focus on Structural Biology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9434-7_6

Download citation

Publish with us

Policies and ethics