Skip to main content

Simulation of Elastic Scattering with a Coupled FMBE-FE Approach

  • Chapter
Recent Advances in Boundary Element Methods

Abstract

In this paper scattering problems with elastic obstacles that are hit by an incident acoustic wave are discussed. Underwater acoustics mainly differs from air acoustics in the fact that a strong coupling scheme between the structural part and the acoustic domain is necessary. Such a scheme is discussed, using the fast multilevel multipole boundary element method (FMBEM) to model the exterior acoustic fluid. The structural part is modeled with the finite element method (FEM). To obtain a high flexibility, an interface to a commercial FE package is established. For a high efficiency, an iterative solver with preconditioning is applied. The numerical results are compared with an analytical solution for a model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benzi M (2002) Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182:418–477

    Article  MATH  MathSciNet  Google Scholar 

  • Brunner D, Junge M, Gaul L (2007) Strong coupling of the fast multilevel multipole boundary element method with the finite element method for vibro-acoustic problems. In: Proceedings of the 14th International Congress on Sound and Vibration (ICSV14)

    Google Scholar 

  • Brunner D, Junge M, Gaul L (2009) A comparison of FE–BE coupling schemes for large scale problems with fluid-structure interaction. International Journal for Numerical Methods in Engineering 77 (5): 664–688

    Google Scholar 

  • Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proceedings of the Royal Society of London 323:201–220

    Google Scholar 

  • Chen ZS, Hofstetter G, Mang HA (1998) A Galerkin-type BE-FE formulation for elasto-acoustic coupling. Computer Methods in Applied Mechanics and Engineering 152:147–155

    Article  MATH  Google Scholar 

  • Coifman R, Rokhlin V, Wandzura S (1993) The fast multipole method for the wave equation: A pedestrian description. IEEE Antennas and Propagation Magazine 35:7–12

    Article  Google Scholar 

  • Estorff O von (ed) (2000) Boundary Elements in Acoustics: Advances and Applications. WIT Press, Southampton, UK

    MATH  Google Scholar 

  • Everstine GC, Henderson FM (1990) Coupled finite element/boundary element approach for fluid-structure interaction. Journal of Sound and Vibration 87:1938–1947

    Google Scholar 

  • Fahy F (2007) Sound and Structural Vibration. Academic Press, New York, 2nd edition

    Google Scholar 

  • Fischer M (2004) The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction. PhD Thesis, University of Stuttgart

    Google Scholar 

  • Gaul L, Fischer M (2006) Large-scale simulations of acoustic-structure interaction using the fast multipole BEM. Zeitschrift für Angewandte Mathematik und Mechanik 86:4–17

    Article  MATH  MathSciNet  Google Scholar 

  • Gaul L, Kögl M, Wagner M (2003) Boundary Element Methods for Engineers and Scientists. Springer Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. Journal of Computational Physics 73:325–348

    Article  MATH  MathSciNet  Google Scholar 

  • Gyure MF, Stalzer MA (1998) A prescription for the multilevel Helmholtz FMM. IEEE Computational Science & Engineering 5:39–47

    Article  Google Scholar 

  • Hughes MD, Chen K (2004) An efficient preconditioned iterative solver for solving a coupled fluid structure interaction problem. International Journal of Computer Mathematics 81:583–594

    Article  MATH  MathSciNet  Google Scholar 

  • Junge M, Fischer M, Maess M, Gaul L (July 11–14 2005) Acoustic simulation of an idealized exhaust system by coupled FEM and Fast Multipole BEM. In: Proceedings of the 12th International Congress on Sound and Vibration (ICSV12), Lisboa

    Google Scholar 

  • Junger MC, Feit D (1986) Sound, Structures, and Their Interaction. The MIT Press, Cambridge, 2nd edition

    Google Scholar 

  • Kinsler LE, Frey AR, Coppens A, Sanders J (1999) Fundamentals of Acoustics. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Moosrainer M (2000) Fluid-Struktur-Kopplung. PhD Thesis, Universität der Bundeswehr München

    Google Scholar 

  • Ochmann M, Homm A, Makarov S, Semenov S (2003) An iterative GMRES-based boundary element solver for acoustic scattering. Engineering Analysis with Boundary Elements 27: 714–725

    Article  Google Scholar 

  • Rjasanow S, Steinbach O (2007) The Fast Solution of Boundary Integral Equations. Springer–Verlag, New York

    MATH  Google Scholar 

  • Rokhlin V (1993) Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Applied and Computational Harmonic Analysis, 1:82–93

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider S (2003) Efficient Usage of the Boundary Element Method for Solving the Time Harmonic Helmholtz Equation in Three Dimensions. PhD Thesis, Technische Universität Dresden

    Google Scholar 

  • Seybert AF, Soenarko B, Rizzo FJ, Shippy DJ (1985) An advanced computational method for radiation and scattering of acoustic waves in three dimensions. Journal of the Acoustical Society of America, 77:362–368

    Article  MATH  Google Scholar 

  • Shen L, Liu YJ (2007) An adaptive fast multipole boundary element method for three–dimensional acoustic wave problems based on the Burton-Miller formulation. Computer Mechanical 40:461–472

    Article  MATH  Google Scholar 

  • van der Vorst HA (2003) Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wu TW (2000) Boundary Element Acoustics: Fundamentals and Computer Codes. WIT Press, Southampton, UK

    MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The Finite Element Method, Vol. 1. Butterworth-Heinemann, Oxford, 5th edition

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Gaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gaul, L., Brunner, D., Junge, M. (2009). Simulation of Elastic Scattering with a Coupled FMBE-FE Approach. In: Manolis, G.D., Polyzos, D. (eds) Recent Advances in Boundary Element Methods. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9710-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9710-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9709-6

  • Online ISBN: 978-1-4020-9710-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics