Skip to main content

Mean Value Theorems for the Scalar Derivative and Applications

  • Chapter
  • First Online:
Nonlinear Analysis and Variational Problems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 35))

  • 1248 Accesses

Abstract

In this paper, we present some mean value theorems for the scalar derivatives. This mathematical tool is used to develop a new method applicable to the study of existence of nontrivial solutions of complementarity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Andreani, J. M. Martinez, Reformulations of variational inequalities on a simplex and compactification of complementarity problems, SIAM J. Opt. 10(3) (2000) 878–895.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Chen, X. Chen, C. Kanzow, A penalized Fischer-Burmeister NCP-function: Theoretical investigations and numerical results, Math. Programming 88(1) (2000) 211–216.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

    MATH  Google Scholar 

  4. R. Cottle, J. Pang, R. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.

    MATH  Google Scholar 

  5. T. De Luca, F. Facchinei, C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Math. Programming 75(3) (1996) 407–439.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Facchinei, C. Kanzow, A nonsmooth inexact Newton method for the large-scale nonlinear complementarity problems, Math. Programming 76(3) (1997) 493–512.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Ferrer, On Rolle’s theorem in spaces of infinite dimension, Indian J. Math. 42(1) (2000) 21–36.

    MATH  MathSciNet  Google Scholar 

  8. A. Fischer, Solving linear complementarity problems by embedding, (Preprint) Dresden University of Technology (1992).

    Google Scholar 

  9. A. Fischer, A special Newton-type optimization method, Optimization 24(3–4) (1992) 269–284.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Fischer, An NCP-function and its use for the solution of complementarity problems, Recent advances in nonsmooth optimization, World Sci. Publ., River Edge, NJ, 88–105, 1995.

    Google Scholar 

  11. A. Fischer, A Newton-type method for positive semidefinite linear complementarity problems, J. Optim. Theory Appl. 86(3) (1995) 585–608.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Fischer, On the local superlinear convergence of a Newton-type method for LCP under weak conditions, Optimization Methods and Software, 6 (1995) 83–107.

    Article  Google Scholar 

  13. A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions, Math. Programming, 76(3), 513–532 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Fukushima, Merit functions for variational inequality and complementarity problems, Nonlinear Optimization and Applications (Eds. G. Di Billo and F. Gianessi), Plenum Press, New York, 155–170, 1996.

    Google Scholar 

  15. G. Isac, The numerical range theory and boundedness of solutions of the complementarity problem, J. Math. Anal. Appl. 143(1) (1989) 235–251.

    Article  MathSciNet  Google Scholar 

  16. G. Isac, Complementarity Problems, Lecture Notes in Mathematics, vol. 1528, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  17. G. Isac, Topological Methods in Complementarity Theory, Kluwer Academic Publishers, Dordrecht, 2000.

    MATH  Google Scholar 

  18. G. Isac, Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities, Springer, Berlin, 2006.

    MATH  Google Scholar 

  19. G. Isac, Bulavsky, V.A. and Kalashnikov, V.V., Complementarity, Equilibrium, Efficiency and Economics, Kluwer Academic Publishers, Dordrecht, 2002.

    MATH  Google Scholar 

  20. G. Isac and S.Z. Németh, Scalar derivatives and scalar asymptotic derivatives: properties and some applications. J. Math. Anal. Appl. 278(1) (2003) 149–170.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Isac and S.Z. Németh, Scalar derivatives and scalar asymptotic derivatives. An Altman type fixed point theorem on convex cones and some applications. J. Math. Anal. Appl. 290(2) (2004) 452–468.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Isac and S.Z. Németh, Scalar and Asymptotic Scalar Derivatives. Theory and Applications, Springer (forthcoming).

    Google Scholar 

  23. C. Kanzow, N. Yamashita, M. Fukushima, New NCP-functions and their properties, J. Optim. Theory Appl. 94(1) (1997) 115–135.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kobayashi, M.H., On an extension of Rolle’s theorem to locally convex spaces, J. Math. Anal. Appl. 323(2) (2006) 1225–1230.

    Article  MATH  MathSciNet  Google Scholar 

  25. S.Z. Németh, A scalar derivative for vector functions, Riv. Mat. Pura Appl., 10(1992) 7–24.

    MATH  Google Scholar 

  26. S.Z. Németh, Scalar derivatives and spectral theory, Mathematica, Thome 35(58), N.1, (1993) 49–58.

    MATH  Google Scholar 

  27. S.Z. Németh, Scalar derivatives in Hilbert spaces, Positivity 10(2) (2006) 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Sun and L. Qi, On NCP-functions, Comput. Optim. Appl., 13(1–3) (1999) 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Isac and S.Z. Németh, Browder-Hartman-Stampacchia Theorem and the existence of a bounded interior band of epsilon solutions for nonlinear complementarity problems, Rocky Mountain J. Math, 6(37) (2007) 1917–1940

    Article  Google Scholar 

  30. G. Isac and S.Z. Németh, Duality in multivalued complementarity theory by using inversions and scalar derivatives, J Global Optim., 33(2) (2005) 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Isac and S.Z. Németh, Duality in nonlinear complementarity theory by using inversions and scalar derivatives, Math. Inequal. Appl., 9(4) (2006) 781–795.

    MATH  MathSciNet  Google Scholar 

  32. G. Isac and S.Z. Németh, Duality of implicit complementarity problems by using inversions and scalar derivatives, J Optim. Theory Appl., 128(3) (2006) 621–633.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. Isac and S.Z. Németh, Scalar and Asymptotic Scalar Derivatives. Theory and Applications, Springer Optimization and Application, 13. Springer, New York, 2008.

    Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to A. B. Németh for many helpful conversations. S. Z. Németh was supported by the Hungarian Research Grant OTKA 60480.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Isac†, G., Németh, S. (2010). Mean Value Theorems for the Scalar Derivative and Applications. In: Pardalos, P., Rassias, T., Khan, A. (eds) Nonlinear Analysis and Variational Problems. Springer Optimization and Its Applications, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0158-3_22

Download citation

Publish with us

Policies and ethics