Skip to main content

Further Possible Experiments

  • Chapter
  • First Online:
Hands-On Chemical Ecology
  • 1058 Accesses

Abstract

This final chapter suggests some additional ideas for more exercises that instructors can flesh out and develop into different directions. The cited references are meant to be mere starting points to the literature.

Under a microscope, expose male nematodes to a drop of vanillic acid. Vanillic acid is the sex pheromone of females. The particular species studied was the soybean cyst nematode, Heterodera glycines. The male nematode should respond by moving to the odor source, then coiling (Chasnov et al. 2007, Jonz et al. 2001; Meyer and Huettel 1996). You can test concentration effects; compare responses to homologs and analogs; and test for specificity by using pheromones of other nematode species. This experiment is more suited for campuses where nematode research is already going on and animals and pheromones are more readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chasnov JR, So WK, Chan CM, Chow KL (2007) The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc Natl Acad Sci USA 104:6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Jonz MG, Riga E, Mercier AJ, Potter JW (2001) Partial isolation of a water soluble pheromone from the sugar beet cyst nematode, Heterodera schachtii, using a novel bioassay. Nematology 3:55–64

    Article  CAS  Google Scholar 

  • Meyer SLF, Huettel RN (1996) Application of a sex pheromone, pheromone analogs, and Verticillium lecanii for management of Heterodera glycines. J Nematol 28:36–42

    CAS  PubMed  Google Scholar 

  • Rosenkoetter JS, Boice R (1975) Chemical communication in earthworms. In: Price EO, Stokes AW (eds) Animal behavior in laboratory and field. Freeman, San Francisco, CA

    Google Scholar 

  • Cook A (1979) Homing by the slug Limax pseudoflavus. Anim Behav 27:545–552

    Article  Google Scholar 

  • Cook A (1992) The function of trail following in the pulmonate slug, Limax pseudoflavus. Anim Behav 43:813–821

    Article  Google Scholar 

  • Davies MS, Blackwell J (2007) Energy saving through trail following in a marine snail. Proc Biol Sci 274:1233–1236

    Article  PubMed  Google Scholar 

  • Chen J, Henderson G, Laine RA (1998) Isolation and identification of a 2-phenoxyethanol from a ballpoint pen ink as a trail-following substance of Coptotermes formosanus Shiraki and Reticulitermes sp. J Entomol Sci 33:97–105

    CAS  Google Scholar 

  • Suckling DM, Peck RW, Manning LM, Stringer LD, Cappadonna J, El-Sayed AM (2008) Pheromone disruption of argentine ant trail integrity. J Chem Ecol 34:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Travis H (2003) Pheromone caterpillar trails: An easy lab exercise for the classroom. Am Biol Teacher 65:456–461

    Article  Google Scholar 

  • Appelt CW, Sorensen PW (1999) Freshwater fish release urinary pheromones in a pulsatile manner. In: Johnston RE, Műller-Schwarze D, Sorensen PW (eds) Advances in chemical signals in vertebrates. Kluwer, New York, NY, p 247

    Google Scholar 

  • Dawley EM (1985) Evolution of chemical signals as a premating isolation mechanism in a complex of terrestrial salamanders. In: Duvall D, Műller-Schwarze D, Silverstein RM (eds) Chemical signals in vertebrates, vol. IV. Plenum, New York, NY, p 221

    Google Scholar 

  • Drickamer L (1975) Hormonal and social influences on the scent-marking behavior of the Mongolian gerbil. pp. 83–85 In: Price EO, Stokes AW (eds) Animal behavior in laboratory and field. (Price EO, Stokes AW, eds), Freeman, San Francisco, CA, pp 83–85

    Google Scholar 

  • Thiessen DD, Friend M, Lindzey G (1968) Androgen control of territorial marking in the Mongolian gerbil (Meriones unguiculatus). Science 160:432–442

    Article  Google Scholar 

  • Desjardins C, Maruniak JA, Bronson FH (1973) Social rank in house mice: Differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939–941

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Gosling LM (2004) Manipulation of olfactory signalling and mate choice for conservation breeding: A case study of the harvest mouse. Conserv Biol 18:548–556

    Article  Google Scholar 

  • Johnston RE (1986) Effect of odors on male sexual behavior. Behav Neural Biol 46:168–188

    Article  CAS  PubMed  Google Scholar 

  • Műller-Schwarze D, Volkman NJ, Zemanek K (1977) Osmetrichia: Specialized scent hairs in black-tailed deer. J Ultrastruct Res 59:223–230

    Article  PubMed  Google Scholar 

  • Bouchard P, Hsiung C-C, Yaylayan VA (1997) Chemical analysis of defense secretions of Sipyloides sipylus and their potential use as repellents against rats. J Chem Ecol 23:2049–2057

    Article  CAS  Google Scholar 

  • Eisner T, Eisner M, Siegler M (2005) Secret weapons: Defenses of insects, spiders, scorpions and other many-legged creatures. Belknap Press, Cambridge, MA

    Google Scholar 

  • Berryman AA (1972) Resistance of conifers to invasion by bark beetle–fungus associations. Bioscience 22:598–602

    Article  Google Scholar 

  • Lorio PL Jr (1993) Environmental stress and whole-tree physiology. In: Schowalter TD, Filip GM (eds) Beetle–pathogen interactions in conifer forests. Academic, London, pp 82–101

    Google Scholar 

  • Lorio PL Jr (1988) Growth and differentiation-balance relationships in pines affect their resistance to bark beetles (Coleoptera: Scolytidae). In: Mattson WJ, Levieux J, Bernard-Dagan C (eds) Mechanisms of woody plant defenses against insects: Search for pattern. Springer, New York, NY, pp 73–92

    Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann Rev Entomol 42:179–206

    Article  CAS  Google Scholar 

  • Stephen FM, Paine TD (1985) Seasonal patterns of host tree resistance to fungal associates of the southern pine beetle. Z Ang Ent 99:113–122

    Article  Google Scholar 

  • Wood DL (1972) Selection and colonization of ponderosa pine by bark beetles. In: Van Emden HF (ed) R. E. S. Symposium No. 6. insect/plant relationships. Blackwell, Oxford

    Google Scholar 

  • Hainsworth MD (1967) Experiments with Hydra and Sea-Anemones. In: Experiments in animal behaviour. Macmillan, New York, NY, p 29

    Google Scholar 

  • Hainsworth MD (1967) Behavior of Arthropods other than Insects. In: Experiments in animal behaviour. Macmillan, New York, NY, p 101

    Google Scholar 

  • Elliott EJ (1986) Chemosensory stimuli in feeding behavior of the leech Hirudo medicinalis. J Comp Physiol A: Neuroethol Sensory Neural Behav Physiol 159:391–401

    Article  CAS  Google Scholar 

  • Kreuter K, Baier B, Aßmann C, Steidle JLM (2008) Prey location and prey choice by the freshwater leech Erpobdella octoculata using foraging kairomones. Freshwater Biol 53:1524–1530

    Article  Google Scholar 

  • Chases LG (2008) The behavioral response of larval coastal giant salamanders, Dicamptodon tenebrosus, to chemical stimuli. MA Thesis. Humboldt State University, Biological Sciences

    Google Scholar 

  • Lindquist SB, Bachman MD (1980) Feeding behavior of the tiger salamander. Herpetologia 36:144–158

    Google Scholar 

  • Gove D, Burkhardt GM (1975) Responses of ecologically dissimilar populations of the water snake Natrix s. sipedon to chemical cues from prey. J Chem Ecol 1:25–40

    Article  Google Scholar 

  • Royce-Malmgren CH, Watson WH III (1987) Modification of olfactory-related behavior in juvenile Atlantic salmon by changes in pH. J Chem Ecol 13:533–546

    Article  CAS  Google Scholar 

  • Edmunds M, Dewhirst RA (1994) The survival value of countershading with wild birds as predators. Biol J Linn Soc 51:447–452

    Article  Google Scholar 

  • Vander Wall SB (2003) How rodents smell buried seeds: A model based on the behavior of pesticides in soil. J Mammal 84:1089–1099

    Article  Google Scholar 

  • Bullock TH (1953) Predator recognition and escape responses of some intertidal gastropods on presence of starfish. Behaviour 5:130–140

    Article  Google Scholar 

  • Kelly PM, Cory JS (1987) Operculum closing as a defense against predatory leeches in four British freshwater prosobranch snails. Hydrobiologia 144:121–124

    Article  Google Scholar 

  • Rundle SD, Brönmark C (2001) Inter- and intra specific trait compensation of defence mechanisms in freshwater snails. Proc Biol Sci 268:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Kats LB, Petranka JW, Sih A (1988) Antipredator defenses and the persistence of amphibian larvae. Ecology 69:1865–1870

    Article  Google Scholar 

  • Kats LB (1988) The detection of certain predators via olfaction by small-mouthed salamander larvae, Ambystoma texanum. Behav Neural Biol 50:126–131

    Article  CAS  PubMed  Google Scholar 

  • Petranka JW, Kats LB, Sih A(1987) Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim Behav 35:420–425

    Article  Google Scholar 

  • Soderquist CJ (1979) Juglone and allelopathy. J Chem Educ 50:782–783

    Article  Google Scholar 

  • Terzi I, KocaçaliÅŸkan I, BenlioÄŸlu, Solak K (2003) Effects of juglone on growth of cucumber seedlings with respect to physiological and anatomical parameters. Acta Physiologiae Plantarum 25:353–356

    Article  CAS  Google Scholar 

  • Terzi I (2008) Allelopathic effects of juglone and decomposed walnut leaf juice on musk melon and cucumber seed germination and seedling growth. Afr J Biotechnol 7:1870–1874

    Google Scholar 

  • Forester DC, Wisnieski A (1991) The significance of airborne olfactory cues to the recognition of home area by the dart-poison frog Dendrobates pumilio. J Herpetol 25:502–504

    Article  Google Scholar 

  • Grubb JC (1973) Olfactory orientation in Bufo woodhousei fowleri, Pseudacris clarki and P. streckeri. Anim Behav 21:726–732

    Article  CAS  PubMed  Google Scholar 

  • Grubb JC (1976) Maze orientation by Mexican toads, Bufo valliceps, using olfactory and configurational cues. J Herpetol 10:97–104

    Article  Google Scholar 

  • McGregor JH, Teska WR (1989) Olfaction as an orientation mechanism in migrating Ambystoma maculatum. Copeia 1989:779–781

    Article  Google Scholar 

  • Ogurtsov SV, Bastakov VA (2001) Imprinting on native pond odour in the pool frog Rana lessonae CAM. In: Marchlewska-Koj A, Lepri JJ, Műller-Schwarze D (eds) Chemical signals in vertebrates, vol. 9. Kluwer, New York, NY, pp 433–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Müller-Schwarze, D. (2009). Further Possible Experiments. In: Hands-On Chemical Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0378-5_25

Download citation

Publish with us

Policies and ethics