Skip to main content

Casting Light on Neural Function: A Subjective History

  • Chapter
  • First Online:
Imaging the Brain with Optical Methods
  • 911 Accesses

Abstract

Optical methods offer a number of advantages for the study of neural systems. Optical techniques are relatively noninvasive, and offer wide field of view, in addition to high resolution in time and in space. Improvements in optical sensor technologies and imaging techniques continually enhance imaging performance, and extend resolution into three dimensions. Digital signal processing strategies allow increasingly subtle signals to be extracted and visualized. Imaging methods allow large populations of cells to be examined simultaneously, while resolving individual cells. Differential absorption or fluorescence emission by endogenous biochemicals or exogenous reporters allows characterization of specific aspects of the chemical and physical environment of cells, and produces signals that are highly correlated with neural activation. Fast intrinsic optical signals, which appear to be tightly coupled to the biophysical processes of neural activation, hold great promise for dynamic imaging of function in large populations of neurons. Coupled with multi-channel electrophysiological and computational modeling techniques, optical imaging enables powerful new understanding of the function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blasdel GG (1989) Visualization of neuronal activity in monkey striate cortex. Ann Rev Physiol 51:561–581

    Article  CAS  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage Sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321(6070):579–585

    Article  CAS  PubMed  Google Scholar 

  • Boas DA, Jones SR, Devor A, Huppert TJ, Dale AM (2008) A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40(3):1116–1129

    Article  PubMed  Google Scholar 

  • Bosking WH, Crowley JC, Fitzpatrick D (2002) Spatial coding of position and orientation in primary visual cortex. Nat Neurosci 5(9):874–888

    Article  CAS  PubMed  Google Scholar 

  • Cannestra AF, Bookheimer SY, Pouratian N, O’Farrell A, Sicotte N, Martin NA, Becker D, Rubino G, Toga AW (2000) Temporal and topographical characterization of language cortices using intraoperative optical intrinsic signals. NeuroImage 12(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Cohen LB (1973) Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 53(2):373–413

    CAS  PubMed  Google Scholar 

  • Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activation. Nature 218:438–441

    Article  CAS  PubMed  Google Scholar 

  • Cohen LB, Keynes RD, Landowne D (1972) Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components. J Physiol 224:701–725

    CAS  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM, Davila HV, Ross WN, Landowne D, Waggoner AS, Wang CH (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19:1–36

    Article  CAS  PubMed  Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of calcium induced by excitatory amino acids in Ca1 hippocampal neurons. Science 240(4852):649–653

    Article  CAS  PubMed  Google Scholar 

  • Foust AJ, Rector DM (2007) Optically teasing apart neural swelling and depolarization. Neuroscience 145(3):887–899

    Article  CAS  PubMed  Google Scholar 

  • Franceschini MA, Nissilä I, Wu W, Diamond SG, Bonmassar G, Boas DA (2008) Coupling between somatosensory evoked potentials and hemodynamic response in the rat. NeuroImage 41(2):189–203

    Article  PubMed  Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Nat Acad Sci USA 94(23):12699–12704

    Article  CAS  PubMed  Google Scholar 

  • Frostig RD, Lieke E, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA 87:6082–6086

    Article  CAS  PubMed  Google Scholar 

  • George JS (2002) Event-related neural responses. In: Ramachandran, ed. Encyclopedia of the Human Brain. Academic, New York

    Google Scholar 

  • George JS, Fowler JC (1988) A calcium transient is associated with hippocampal slice excitation. Biophys J 53(2):A560

    Google Scholar 

  • George JS, Fowler JC (1990) Intensified video imaging of neural population activity. Soc Neurosci Abstr 16(1):55

    Google Scholar 

  • George JS, Hagins WA (1983) Control of Ca2+ in rod outer segment disk membranes by light and cGMP. Nature 303:344–348

    Article  CAS  PubMed  Google Scholar 

  • George JS, Fowler JC, Ranken DM (1990) Imaging the calcium transient associated with hippocampal slice excitation. Biophys J 53(2):A131

    Google Scholar 

  • George JS, Schmidt DM, Rector DM, Wood CC (2001) Dynamic functional neuroimaging integrating multiple modalities. In: Jezzard, Matthew, Smith (eds) Functional MRI: an introduction to methods, Oxford, pp 353-382

    Google Scholar 

  • Gratton G, Fabiani M, Corballis PM, Gratton E (1997) Noninvasive detection of fast signals from the cortex using frequency-domain optical methods. Ann NY Acad Sci 820:286–299

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Google Scholar 

  • Grinvald, A, Lieke, E, Frostig, RD, Gilbert, CD, and Wiesel (1986), TN. Functional architecture of the cortex revealed by optical imaging of intrinsic signals. Nature, 324:361–364

    Article  CAS  PubMed  Google Scholar 

  • Haglund MM, Ojemann GA, Hochman DW (1992) Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358:668–671

    Article  CAS  PubMed  Google Scholar 

  • Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Nat Acad Sci USA 102(28):9790–9795

    Article  CAS  PubMed  Google Scholar 

  • Hill DK (1950) The volume change resulting from stimulation of a giant nerve fibre. J Physiol 111:304–327

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci 140(899):177–183

    Article  CAS  PubMed  Google Scholar 

  • Holthoff K, Witte OW (1996) Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci 16(8):2740–2749

    CAS  PubMed  Google Scholar 

  • Jones MS, Barth DS (1999) Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. J Neurophysiol 82(3):1599–1609

    CAS  PubMed  Google Scholar 

  • Jonnal RS, Rha J, Zhang Y, Canse B, Gao W, Miller DT (2007) In vivo functional imaging of human cone photoreceptors. Opt Express 15(24):16142–16160

    Article  Google Scholar 

  • Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW (2003) A model of high-frequency oscillatory potentials in retinal ganglion cells. Vis Neurosci 20(5):465–480

    Article  PubMed  Google Scholar 

  • Kenyon GT, Travis BJ, Theiler J, George JS, Stephens GJ, Marshak DW (2004) Stimulus-specific oscillations in a retinal model. IEEE Trans Neural Netw 15:1083–1091

    Article  PubMed  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16(5):817–826

    Article  CAS  PubMed  Google Scholar 

  • Landowne D (1985) Molecular motion underlying activation and inactivation of soduim channels in squid giant axons. J Membr Biol 88:173–185

    Article  CAS  PubMed  Google Scholar 

  • Landowne D (1992) Optical activity change with nerve impulses. Biophys J 61:A109

    Article  Google Scholar 

  • Lindsey BG, Morris KF, Shannon R, Gerstein GL (1997) Repeated patterns of distributed synchrony in neuronal assemblies. J Neurophysiol 78(3):1714–1719

    CAS  PubMed  Google Scholar 

  • Lipton P (1973) Effects of membrane depolarization on light scattering by cerebral cortical slices. J Physiol 231:365–383

    CAS  PubMed  Google Scholar 

  • MacVicar BA, Hochman D (1991) Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 11(5):1458–1469

    CAS  PubMed  Google Scholar 

  • Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272(5261):551–554

    Article  CAS  PubMed  Google Scholar 

  • Masino SA, Kwon MC, Dory Y, Frostig RD (1993) Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 90(21):9998–10002

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan MJ, Ho S, Sholomenko G, Yee W (1993) Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J Neurosci Methods 46(2):91–106

    Article  PubMed  Google Scholar 

  • Oldenbourg R, Salmon ED, Tran PT (1998) Birefringence of single and bundled microtubules. Biophys J 7:645–654

    Article  Google Scholar 

  • Rector DM, George JS (2001) Continuous image and electrophysiological recording with real time processing and control. Methods 25:151–163

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Poe GR, Harper RM (1993) Fiber optic imaging of subcortical neural tissue in freely behaving animals. In: Dirnagl U et al (eds) Optical imaging of brain function and metabolism. Plenum, New York, pp 81–86

    Google Scholar 

  • Rector DM, Poe GR, Kristensen MP, Harper RM (1995) Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep. Brain Res 696:151–160

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Rogers RF, George JS (1999) A focusing image probe for assessing neural activity in-vivo. J Neurosci Methods 91:135–145

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Harper RM, George JS (2002) In-vivo observations of rapid scattered light changes associated with electrical events. In: Frostig RD (ed) Methods for in vivo optical imaging of the central nervous system. CRC, Boca Raton, pp 113–171

    Google Scholar 

  • Rector DM, Ranken DM, George JS (2003) High-performance confocal system for microscopic applications. Methods 30(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Carter KM, Volegov P, George JS (2005) Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage 26(6):619–627

    Article  PubMed  Google Scholar 

  • Roe AW, Ts’o DY (1999) Specificity of color connectivity between primate V1 and V2. J Neurophysiol 82(5):2719–2730

    CAS  PubMed  Google Scholar 

  • Roper SN, Obenaus A, Dudek FE (1992) Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann Neurol 31(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46:455–472

    Article  CAS  Google Scholar 

  • Salzberg BM, Obaid AL, Gainer H (1985) Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis. J Gen Physiol 86:395–411

    Article  CAS  PubMed  Google Scholar 

  • Schei JL, McCluskey MD, Foust AJ, Yao XC, Rector DM (2008) Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light. NeuroImage 40(3):1034–1043

    Article  PubMed  Google Scholar 

  • Steinbrink J, Kohl M, Obrig H, Curio G, Syre F, Thomas F, Wabnitz H, Rinneberg H, Villringer A (2000) Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head. Neurosci Lett 291(2):105–108

    Article  CAS  PubMed  Google Scholar 

  • Stephens GJ, George JS, Theiler J, Marshak D, Neuenschwander S, Singer W, Kenyon G (2006) See globally, spike locally: oscillations in a retinal model allow fast, local encoding of visual features. Biol Cybern 95(4):327–348

    Article  PubMed  Google Scholar 

  • Stepnoski RA, LaPorta A, Raccuia-Behling F, Blonder GE, Slusher RE, Kleinfeld D (1991) Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci USA 88:9382–9386

    Article  CAS  PubMed  Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242(4879):773–777

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I, Byrne PM (1992) Rapid structural changes in nerve fibers evoked by electrical current pulses. Biochem Biophys Res Commun 188(2):559–564

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci USA 61:883–888

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I, Iwasa K, Gibbons RC (1980) Mechanical changes in crab nerve fibers during action potentials. Jpn J Physiol 30:897–905

    CAS  PubMed  Google Scholar 

  • Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization in the primate visual cortex as revealed by optical imaging of intrinsic signals. Science 249:417–420

    Article  PubMed  Google Scholar 

  • Van Harreveld A (1958) Changes in the diameter of apical dendrites during spreading depression. Am J Physiol 192:457–463

    Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20(10):435–442

    Article  CAS  PubMed  Google Scholar 

  • Waggoner AS (1979) Dye indicators of membrane potential. Ann Rev Biophys Bioeng 8:47–68

    Article  CAS  Google Scholar 

  • Yao XC, George JS (2006a) Optical imaging of fast light-evoked fast neural activation in amphibian retina. Proc SPIE 6078(1):457–464

    Google Scholar 

  • Yao XC, George JS (2006b) Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals. Neuroimage 33(3):898–906

    Article  PubMed  Google Scholar 

  • Yao XC, Rector DM, George JS (2003) Optical lever recording of displacements from activated lobster nerve bundles and nitella internodes. Appl Opt 42(16):2972–2978

    Article  PubMed  Google Scholar 

  • Yao XC, Yamauchi A, Perry B, George JS (2005a) Rapid optical coherence tomography and recording scattering changes from activated frog retina. Appl Opt 44:2019–2023

    Article  PubMed  Google Scholar 

  • Yao XC, Foust A, Rector DM, Barrowes B, George JS (2005b) Cross-polarized reflected light measurement of fast optical responses associated with neural activation. Biophys J 88:4170–4177

    Article  CAS  PubMed  Google Scholar 

  • Yoshikami S, George JS, Hagins WA (1980) Light-induced calcium fluxes from outer segment layer of vertebrate retinas. Nature 286:395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

George, J.S. (2009). Casting Light on Neural Function: A Subjective History. In: Roe, A. (eds) Imaging the Brain with Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0452-2_1

Download citation

Publish with us

Policies and ethics