Skip to main content

The Dynamical Study of the Metamaterial Systems

  • Chapter
  • First Online:
Metamaterials

Abstract

We investigate the dynamical characteristics of metamaterial systems, such as the temporal coherence gain of superlens, the causality limitation on the ideal cloaking systems, the relaxation process and essential elements in the dispersive cloaking systems, and extending the working frequency range of cloaking systems. The point of our study is the physical dispersive properties of meta-materials, which are well known to be intrinsically strongly dispersive. With physical dispersion, new physical pictures could be obtained for the waves propagating inside metamaterial, such as the “group retarded time” for waves inside superlens and cloak, the causality limitation on real metamaterial systems, and the essential elements for design optimization. So we believe the dynamical study of meta-materials will be an important direction for further research. All theoretical derivations and conclusions are demonstrated by powerful finite-difference time-domain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics 1, 224 (2007)

    Article  Google Scholar 

  2. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007)

    Article  Google Scholar 

  3. Chen, H., Chan, C.T.: The brief report for the detail of the causality constraint.

    Google Scholar 

  4. Chen, H., Chan, C.T.: Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007)

    Article  Google Scholar 

  5. Chen, H., Jiang, X., Chan, C.T.: Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76, 241104 (2007)

    Article  Google Scholar 

  6. Chen, H., Liang, Z., Yao, P., Jiang, X., Ma, H., Chan, C.T.: Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76, 241104 (2007)

    Article  Google Scholar 

  7. Chen, H., Wu, B.-I., Zhang, B., Kong, J.A.: Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett. 99, 063903 (2007)

    Article  Google Scholar 

  8. Chen, L., He, S., Shen, L.: Finite-size effects of a left-handed material slab on the image quality. Phys. Rev. Lett. 92, 107404 (2004)

    Article  Google Scholar 

  9. Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003); Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Electromagnetic waves: Negative refraction by photonic crystals. Nature 423, 604 (2003)

    Article  Google Scholar 

  10. Cummer, S.A.: Dynamics of causal beam refraction in negative refractive index materials. Appl. Phys. Lett. 82, 2008 (2003)

    Article  Google Scholar 

  11. Cummer, S.A.: Simulated causal subwavelength focusing by a negative refractive index slab. Appl. Phys. Lett. 82, 1503 (2003)

    Article  Google Scholar 

  12. Cummer, S.A., Popa, B.-I., Schurig, D., Smith, D.R.: Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)

    Article  Google Scholar 

  13. Engheta, N.: An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Antenn. Wireless Propag. Lett. 1, 10, (2002)

    Article  Google Scholar 

  14. Fante, R.L., McCormack, M.T.: Reflection properties of the Salisbury screen. IEEE Trans. Antenn. Propag. 36, 1443 (1988)

    Article  Google Scholar 

  15. Feise, M.W., Kivshar, Y.S.: Sub-wavelength imaging with a left-handed material flat lens. Phys. Lett. A 334, 326 (2005)

    Article  MATH  Google Scholar 

  16. Foteinopoulou, S., Economou, E.N., Soukoulis, C.M.: Refraction in media with a negative refractive index. Phys. Rev. Lett. 90, 107402 (2003); Pendry, J.B., Smith, D.R.: Comment on “Wave refraction in negative-index media: Always positive and very inhomogeneous”. Phys. Rev. Lett. 90, 029703 (2003)

    Article  Google Scholar 

  17. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007)

    Article  Google Scholar 

  18. Gomez-Santos, G.: Universal features of the time evolution of evanescent modes in a lefthanded perfect lens. Phys. Rev. Lett. 90, 077401 (2003)

    Article  Google Scholar 

  19. Jiang, X., et al.: unpublished.

    Google Scholar 

  20. Jiang, X., Han, W., Yao, P., Li, W.: Temporal-coherence gain of superlens image with quasimonochromatic source. Appl. Phys. Lett. 89, 221102 (2006)

    Article  Google Scholar 

  21. Jiang, X., Soukoulis, C.M.: Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70 (2000)

    Article  Google Scholar 

  22. Kerker, M.: Invisible bodies. J. Opt. Soc. Am. 65, 376 (1975)

    Article  Google Scholar 

  23. Koschny, T., Kafesaki, M., Economou, E.N., Soukoulis, C.M.: Effective medium theory of left-handed materials. Phys. Rev. Lett. 93, 107402 (2004)

    Article  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford, Ch. 11, pp. 315–321 (1975)

    Google Scholar 

  25. Leonhardt, U.: Optical conformal mapping. Science 312, 1777 (2006)

    Article  MathSciNet  Google Scholar 

  26. Leonhardt, U.: Notes on conformal invisibility devices. New J. Phys. 8, 118 (2006)

    Article  Google Scholar 

  27. Leonhardt, U., Philbin, T.G.: General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  Google Scholar 

  28. Liang, Z., Yao, P., Jiang, X., Sun, X.: unpublished.

    Google Scholar 

  29. Loschialpo, P.F., Smith, D.L., Forester, D.W., Rachford, F.J., Schelleng, J.: Electromagnetic waves focused by a negative-index planar lens. Phys. Rev. E 67, 025602(R) (2003)

    Article  Google Scholar 

  30. Luo, C., Johnson, S.G., Joannopoulos, J.D., Pendry, J.B.: Subwavelength imaging in photonic crystals. Phys. Rev. B 68, 045115 (2003)

    Article  Google Scholar 

  31. Luo, H., Hu, W., Shu, W., Li, F., Ren, Z.: Superluminal group velocity in an anisotropic metamaterial. Europhys. Lett. 74 1081 (2006)

    Article  Google Scholar 

  32. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University, Cambridge (1995); Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  33. Markos, P., Soukoulis, C.M.: Transmission studies of left-handed materials. Phys. Rev. B 65, 033401 (2001); Markos, P., Soukoulis, C.M.: Numerical studies of left-handed materials and arrays of split ring resonators. Phys. Rev. E 65, 036622 (2002)

    Article  Google Scholar 

  34. Merlin, R.: Analytical solution of the almost-perfect-lens problem. Appl. Phys. Lett. 84, 1290 (2004)

    Article  Google Scholar 

  35. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  Google Scholar 

  36. Pendry, J.B.: Comment on “Left-handed materials do not make a perfect lens”. Phys. Rev. Lett. 91, 099701 (2003); Smith, D.R., Schurig, D., Rosenbluth, M., Schultz, S., Ramakrishna, S.A., Pendry, J.B.: Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506 (2003)

    Article  Google Scholar 

  37. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Micro. Theo Tech. 47, 2075 (1999); Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  38. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006)

    Article  MathSciNet  Google Scholar 

  39. Pendry, J.B., Smith, D.R.: Comment on “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous” Phys. Rev. Lett. 90, 029703 (2003)

    Google Scholar 

  40. Rao, X.S., Ong, C.K.: Amplification of evanescent waves in a lossy left-handed material slab. Phys. Rev. B 68, 113103 (2003); Rao, X.S., Ong, C.K.: Subwavelength imaging by a lefthanded material superlens. Phys. Rev. E 68, 067601 (2003)

    Article  Google Scholar 

  41. Ruan, Z., Yan, M., Neff, C.W., Qiu, M.: Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys. Rev. Lett. 99, 113903 (2007)

    Article  Google Scholar 

  42. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. John Wiley & Sons, New York (1991)

    Book  Google Scholar 

  43. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  Google Scholar 

  44. Schurig, D., Pendry, J.B., Smith, D.R.: Calculation of material properties and ray tracing in transformation media. Opt. Express 14, 9794 (2006)

    Article  Google Scholar 

  45. Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S.: Guided modes in negative-refractive-index waveguides. Phys. Rev. E 67, 057602 (2003); Peacock, A.C., Broderick, N.G.R.: Guided modes in channel waveguides with a negative index of refraction. Opt. Express 11, 2502 (2003)

    Article  Google Scholar 

  46. Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S.: Microwave transmission through a two-dimensional, isotropic left-handed metamaterial. Appl. Phys. Lett. 78, 489 (2001)

    Article  Google Scholar 

  47. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  Google Scholar 

  48. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  49. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Artech House, Boston (2000)

    MATH  Google Scholar 

  50. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ϕ and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  Google Scholar 

  51. Yao, P., Li, W., Feng, S., Jiang, X.: The temporal coherence improvement of the twodimensional negative-index slab image. Opt. Express 14, 12295 (2006)

    Article  Google Scholar 

  52. Yao, P., Liang, Z., Jiang, X.: Limitation of the electromagnetic cloak with dispersive material. Appl. Phys. Lett. 92, 031111 (2008)

    Article  Google Scholar 

  53. Zhou, L., Chan, C.T.: Vortex-like surface wave and its role in the transient phenomena of meta-material focusing. Appl. Phys. Lett. 86, 101104 (2005); Zhang, Y., Grzegorczyk, T.M., Kong, J.A.: Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability. PIER 35, 271 (2002)

    Article  Google Scholar 

  54. Ziolkowski, R.W., Heyman, E.: Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunya Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, X., Liu, Z., Liang, Z., Yao, P., Lin, X., Chen, H. (2010). The Dynamical Study of the Metamaterial Systems. In: Cui, T., Smith, D., Liu, R. (eds) Metamaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0573-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0573-4_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0572-7

  • Online ISBN: 978-1-4419-0573-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics