Skip to main content

Novel Magnetic Oxide Thin Films

  • Chapter
  • First Online:
Thin Film Metal-Oxides

Abstract

This chapter describes magnetic oxide thin films that are potentially applicable to the next generation spintronic devices. Aluminum oxide and magnesium oxide have already been used as the tunnel barriers in the magnetic tunnel junction which is the key component of Magnetic Random Access Memory, but recently magnetic oxides and their heterostructures have become an active research area for Spintronics. The focus is mainly on three categories of magnetic oxide thin films: half-metallic oxides, diluted magnetic oxides, and multiferroic oxides which would either enhance the performance or provide new functionalities to spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: A spin-based electronics vision for the future. Science 294:1488–1495

    Article  CAS  Google Scholar 

  2. Bibes M, Barthelemy A (2007) Oxide spintronics. IEEE Trans Electron Devices 54:1003–1023

    Article  CAS  Google Scholar 

  3. de Groot RA, Mueller FM, Vanengen PG, Buschow KHJ (1983) New class of materials – half-metallic ferromagnets. Phys Rev Lett 50:2024–2027

    Article  Google Scholar 

  4. Yanase A, Siratori K (1984) Band-structure in the high-temperature phase of Fe3O4. J Physical Soc Japan 53:312–317

    Article  CAS  Google Scholar 

  5. Schwarz K (1986) CrO2 predicted as a half-metallic ferromagnet. J Phys F Met Phys 16:L211–L215

    Article  CAS  Google Scholar 

  6. Pickett WE, Singh DJ (1996) Electronic structure and half-metallic transport in the La1 − x Ca x MnO3 system. Phys Rev B 53:1146–1160

    Article  CAS  Google Scholar 

  7. Parkin SSP, Roche KP, Samant MG, Rice PM, Beyers RB, Scheuerlein RE, O’Sullivan EJ, Brown SL, Bucchigano J, Abraham DW, Lu Y, Rooks M, Trouilloud PL, Wanner RA, Gallagher WJ (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J Appl Phys 85:5828–5833

    Article  CAS  Google Scholar 

  8. Durlam M, Addie D, Akerman J, Butcher B, Brown P, Chan J, DeHerrera M, Engel B N, Feil B, Grynkewich G, Janesky J, Johnson MKK, Molla J, Martin J, Nagel K, Ren J, Rizzo ND, Rodriguez T, Savtchenko L, Salter J, Slaughter JM, Smith K, Sun JJ, Lien M, Papworth K, Shah P, Qin W, Williams R, Wise L, Tehrani S (2003) A 0. 18 μm 4 MB toggling MRAM, IEDM tech. Digest 34.36.31–33

    Google Scholar 

  9. Lammers, D (2006) Freescale begins selling 4-Mbit MRAM. EE Times http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=190301247

  10. Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353–9358

    Article  CAS  Google Scholar 

  11. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7

    Article  CAS  Google Scholar 

  12. Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84:3149–3152

    Article  CAS  Google Scholar 

  13. Julliere M (1975) Tunneling between ferromagnetic-films. Phys Lett A 54:225–226

    Article  Google Scholar 

  14. Barna A, Fink A, Fleming D, Nuspl S, Sheppard L, Spitzer R, Torok EJ, Wuori E (2002) The Transpinnor: An Active Spin-Based Device. Integrated Magnetoelectronics, Minneapolis MN

    Google Scholar 

  15. Raue R, Hopster H, Kisker E (1984) High-resolution spectrometer for spin-polarized electron spectroscopies of ferromagnetic materials. Rev Sci Instrum 55:383–388

    Article  CAS  Google Scholar 

  16. Meservey R, Tedrow PM (1994) Spin-polarized electron-tunneling. Phys Rep – Rev Section Phys Lett 238:173–243

    Google Scholar 

  17. Soulen RJ, Byers JM, Osofsky MS, Nadgorny B, Ambrose T, Cheng SF, Broussard PR, Tanaka CT, Nowak J, Moodera JS, Barry A, Coey JMD (1998) Measuring the spin polarization of a metal with a superconducting point contact. Science 282:85–88

    Article  CAS  Google Scholar 

  18. Kamper KP, Schmitt W, Guntherodt G, Gambino RJ, Ruf R (1987) CrO2 - a New Half-Metallic Ferromagnet. Phys Rev Lett 59:2788–2791

    Article  Google Scholar 

  19. Anguelouch A, Gupta A, Xiao G, Abraham DW, Ji Y, Ingvarsson S, Chien CL (2001) Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys Rev B 6418:180408

    Article  Google Scholar 

  20. Ranno L, Barry A, Coey JMD (1997) Production and magnetotransport properties of CrO2 films. J Appl Phys 81:5774–5776

    Article  CAS  Google Scholar 

  21. Maciejewski M, Kohler K, Schneider H, Baiker A (1995) Interconversion of CrO2 formed by decomposition of chromium(Iii) nitrate nonahydrate. J Solid State Chem 119:13–23

    Article  CAS  Google Scholar 

  22. Ishibashi S, Namikawa T, Satou M (1979) Epitaxial-growth of ferromagnetic CrO2 films in air. Mater Res Bull 14:51–57

    Article  CAS  Google Scholar 

  23. Ingle NJC, Hammond RH, Beasley MR (2001) Growth of the Cr oxides via activated oxygen reactive molecular beam epitaxy: comparison of the Mo and W oxides. J Appl Phys 89: 4631–4635

    Article  CAS  Google Scholar 

  24. Heinig NF, Jalili H, Leung KT (2007) Fabrication of epitaxial CrO2 nanostructures directly on MgO(100) by pulsed laser deposition. Appl Phys Lett 91:253102

    Article  Google Scholar 

  25. Hwang HY, Cheong SW (1997) Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films. Science 278:1607–1609

    Article  CAS  Google Scholar 

  26. Barry A, Coey JMD, Viret M (2000) A CrO2-based magnetic tunnel junction. J Phys Condens Matter 12:L173–L175

    Article  CAS  Google Scholar 

  27. Gupta A, Li XW, Xiao G (2001) Inverse magnetoresistance in chromium-dioxide-based magnetic tunnel junctions. Appl Phys Lett 78:1894–1896

    Article  CAS  Google Scholar 

  28. Parker JS, Ivanov PG, Lind DM, Xiong P, Xin Y (2004) Large inverse magnetoresistance of CrO2∕Co junctions with an artificial barrier. Phys Rev B 69:220413

    Article  Google Scholar 

  29. Leo T, Kaiser C, Yang H, Parkin SSP, Sperlich M, Gutherodt G, Smith DJ (2007) Sign of tunneling magnetoresistance in CrO2-based magnetic tunnel junctions. Appl Phys Lett 91:252506

    Article  Google Scholar 

  30. Miao GX, LeClair P, Gupta A, Xiao G, Varela M, Pennycook S (2006) Magnetic tunnel junctions based on CrO2∕SnO2 epitaxial bilayers. Appl Phys Lett 89:022511

    Article  Google Scholar 

  31. Ji Y, Strijkers GJ, Yang FY, Chien CL, Byers JM, Anguelouch A, Xiao G, Gupta A (2001) Determination of the spin polarization of half-metallic CrO2 by point contact Andreev reflection. Phys Rev Lett 86:5585–5588

    Article  CAS  Google Scholar 

  32. Shannon RD Chamberl BL, Frederic CG (1971) Effect of foreign ions on magnetic properties of chromium dioxide. J Physical Soc Japan 31:1650

    Article  Google Scholar 

  33. Suzuki K, Abe H (2005) Calculations of impurity doping effects in CrO2. IEEE Trans Magn 41:4344–4346

    Article  CAS  Google Scholar 

  34. West KG, Lu JW, He L, Kirkwood D, Chen W, Adl TP, Osofsky MS, Qadri SB, Hull R, Wolf SA (2008) Ferromagnetism in rutile structure Cr doped VO2 thin films prepared by reactive-bias target ion beam deposition. J Superconductivity Novel Magn 21:87–92

    Article  CAS  Google Scholar 

  35. Osofsky MS, West KG, Lu JW, Wolf SA, Measurement of the transport spin polarization of Ru doped CrO2 using point-contact Andreev reflection, in preparation

    Google Scholar 

  36. Bratkovsky AM (1997) The possibility of a very large magnetoresistance in half-metallic oxide systems. JETP Lett 65:452–457

    Article  Google Scholar 

  37. Zener C (1951) Interaction between the d-shells in the transition metals. II Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403

    CAS  Google Scholar 

  38. Jin S, Tiefel TH, Mccormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O Films. Science 264:413–415

    Article  CAS  Google Scholar 

  39. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70: 1039–1263

    Article  CAS  Google Scholar 

  40. Coey JMD, Viret M, von Molnar S (1999) Mixed-valence manganites. Adv Phys 48:167–293

    Article  CAS  Google Scholar 

  41. Gor’kov LP, Kresin VZ (2004) Mixed-valence manganites: fundamentals and main properties. Phys Rep – Rev Section Phys Lett 400:149–208

    Google Scholar 

  42. Osofsky MS, Soulen RJ, Nadgorny BE, Trotter G, Broussard PR, DeSisto WJ (2001) Measurement of the transport spin-polarization of oxides using point contact Andreev reflection (PCAR). Mater Sci Eng B Solid State Mater Adv Technol 84:49–52

    Google Scholar 

  43. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1 − x Sr x MnO3. Phys Rev B 51:14103–14109

    Article  CAS  Google Scholar 

  44. Gupta A, Gong GQ, Xiao G, Duncombe PR, Lecoeur P, Trouilloud P, Wang YY, Dravid VP, Sun JZ (1996) Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys Rev B 54:15629–15632

    Article  Google Scholar 

  45. Li XW, Gupta A, Xiao G, Gong GQ (1997) Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl Phys Lett 71:1124–1126

    Article  CAS  Google Scholar 

  46. Yau JB, Hong X, Posadas A, Ahn CH, Gao W, Altman E, Bason Y, Klein L, Sidorov M, Krivokapic Z (2007) Anisotropic magnetoresistance in colossal magnetoresistive La1 − x Sr x MnO3 thin films. J Appl Phys 102:103901

    Article  Google Scholar 

  47. Konishi Y, Fang Z, Izumi M, Manako T, Kasai M, Kuwahara H, Kawasaki M, Terakura K, Tokura Y (1999) Orbital-state-mediated phase-control of manganites. J Physical Soc Japan 68:3790–3793

    Article  CAS  Google Scholar 

  48. Fang Z, Solovyev IV, Terakura K (2000) Phase diagram of tetragonal manganites. Phys Rev Lett 84:3169–3172

    Article  CAS  Google Scholar 

  49. Zhang PX, Zhang H, Cha LM, Habermeier HU (2003) Tailoring the physical properties of manganite thin films by tuning the epitaxial strain. Phys B Condens Matter 327:257–261

    Article  CAS  Google Scholar 

  50. Takamura Y, Chopdekar RV, Arenholz E, Suzuki Y (2008) Control of the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films through epitaxial strain. Appl Phys Lett 92:162504

    Google Scholar 

  51. Dale D, Fleet A, Brock JD, Suzuki Y (2003) Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Appl Phys Lett 82:3725–3727

    Article  CAS  Google Scholar 

  52. Thiele C, Dorr K, Schultz L, Beyreuther E, Lin WM (2005) Piezoelectrically induced resistance modulations in La0.7Sr0.3MnO3∕Pb(Zr, Ti)O3 field effect devices. Appl Phys Lett 87:162512

    Google Scholar 

  53. Zheng RK, Wang Y, Chan HLW, Choy CL, Luo HS (2007) Determination of the strain dependence of resistance in \(\mathrm{L{a}_{0.7}S{r}_{0.3}Mn{O}_{3}/PMN\mbox{ -}PT}\) using the converse piezoelectric effect. Phys Rev B 75:212012

    Google Scholar 

  54. MacManus-Driscoll JL, Zerrer P, Wang HY, Yang H, Yoon J, Fouchet A, Yu R, Blamire MG, Jia QX (2008) Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat Mater 7:314–320

    Article  CAS  Google Scholar 

  55. Lu Y, Li XW, Gong GQ, Xiao G, Gupta A, Lecoeur P, Sun JZ, Wang YY, Dravid VP (1996) Large magnetotunneling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions. Phys Rev B 54:R8357–R8360

    Article  CAS  Google Scholar 

  56. Sun JZ, KrusinElbaum L, Duncombe PR, Gupta A, Laibowitz RB (1997) Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Appl Phys Lett 70:1769–1771

    Article  CAS  Google Scholar 

  57. Viret M, Drouet M, Nassar J, Contour JP, Fermon C, Fert A (1997) Low-field colossal magnetoresistance in manganite tunnel spin valves. Europhys Lett 39:545–549

    Article  CAS  Google Scholar 

  58. Bowen M, Bibes M, Barthelemy A, Contour JP, Anane A, Lemaitre Y, Fert A (2003) Nearly total spin polarization in \({\mathrm{L{a}_{2/3}S{r}_{1/3}MnO}}_{3}\) from tunneling experiments. Appl Phys Lett 82:233–235

    Article  CAS  Google Scholar 

  59. Feng JF, Kim TH, Han XF, Zhang XG, Wang Y, Zou J, Yu DB, Yan H, Li AP (2008) Space-charge trap mediated conductance blockade in tunnel junctions with half-metallic electrodes. Appl Phys Lett 93:192507

    Article  Google Scholar 

  60. Loos J, Novak P (2002) Double exchange and superexchange in a ferrimagnetic half-metal. Phys Rev B 66:132403

    Article  Google Scholar 

  61. Alvarado SF, Eib W, Siegmann HC, Remeika JP (1975) Photoelectron spin polarization testing ionic structure of 3d levels in ferrites. Phys Rev Lett 35:860–863

    Article  CAS  Google Scholar 

  62. Huang DJ, Chang CF, Chen J, Tjeng LH, Rata AD, Wu WP, Chung SC, Lin HJ, Hibma T, Chen CT (2002) Spin-resolved photoemission studies of epitaxial Fe3O4(100) thin films. J Magn Magn Mater 239:261–265

    Article  CAS  Google Scholar 

  63. Fonin M, Dedkov YS, Mayer J, Rudiger U, Guntherodt G (2003) Preparation, structure, and electronic properties of Fe3O4 films on the \({\mathrm{Fe(110)/Mo(110)/A{l}_{2}O}}_{3}(1120)\) substrate. Phys Rev B 68:045414

    Article  Google Scholar 

  64. Lee S, Fursina A, Mayo JT, Yavuz CT, Colvin VL, Sofin RGS, Shvets IV, Natelson D (2008) Electrically driven phase transition in magnetite nanostructures. Nat Mater 7:130–133

    Article  CAS  Google Scholar 

  65. West KG, Lu JW, Yu J, Kirkwood D, Chen W, Pei YH, Claassen J, Wolf SA (2008) Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition. J Vac Sci Technol A 26:133–139

    Article  CAS  Google Scholar 

  66. Hu G, Suzuki Y (2002) Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys Rev Lett 89:276601

    Article  CAS  Google Scholar 

  67. Alldredge LMB, Chopdekar RV, Nelson-Cheeseman BB, Suzuki Y (2006) Complex oxide-based magnetic tunnel junctions with nonmagnetic insulating barrier layers. J Appl Phys 99:08K303

    Google Scholar 

  68. Alldredge LMB, Chopdekar RV, Nelson-Cheeseman BB, Suzuki Y (2006) Spin-polarized conduction in oxide magnetic tunnel junctions with magnetic and nonmagnetic insulating barrier layers. Appl Phys Lett 89:182504

    Article  Google Scholar 

  69. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944–946

    Article  CAS  Google Scholar 

  70. DiVincenzo DP, Bacon D, Kempe J, Burkard G, Whaley KB (2000) Universal quantum computation with the exchange interaction. Nature 408:339–342

    Article  CAS  Google Scholar 

  71. Ohya S, Ohno K, Tanaka M (2007) Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs. Appl Phys Lett 90:112503

    Article  Google Scholar 

  72. Mack S, Myers RC, Heron JT, Gossard AC, Awschaloma DD (2008) Stoichiometric growth of high Curie temperature heavily alloyed GaMnAs. Appl Phys Lett 92:192502

    Article  Google Scholar 

  73. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  CAS  Google Scholar 

  74. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856

    Article  CAS  Google Scholar 

  75. Chambers SA (2006) Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surf Sci Rep 61:345–381

    Article  CAS  Google Scholar 

  76. Janisch R, Gopal P, Spaldin NA (2005) Transition metal-doped TiO2 and ZnO – present status of the field. J Phys Condens Matter 17:R657–R689

    Article  CAS  Google Scholar 

  77. Abraham DW, Frank MM, Guha S (2005) Absence of magnetism in hafnium oxide films. Appl Phys Lett 87:252502

    Article  Google Scholar 

  78. Shinde SR, Ogale SB, Higgins JS, Zheng H, Millis AJ, Kulkarni VN, Ramesh R, Greene RL, Venkatesan T (2004) Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2-delta films. Phys Rev Lett 92:166601

    Article  CAS  Google Scholar 

  79. Ando K (2006) Seeking room-temperature ferromagnetic semiconductors. Science 312: 1883–1885

    Article  CAS  Google Scholar 

  80. Zhao T, Shinde SR, Ogale SB, Zheng H, Venkatesan T, Ramesh R, Das Sarma S (2005) Electric field effect in diluted magnetic insulator anatase Co : TiO2. Phys Rev Lett 94:126601

    Article  CAS  Google Scholar 

  81. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392

    Article  CAS  Google Scholar 

  82. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  CAS  Google Scholar 

  83. Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29

    Article  CAS  Google Scholar 

  84. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20

    Article  CAS  Google Scholar 

  85. Ederer C, Spaldin NA (2006) Recent progress in first-principles studies of magnetoelectric multiferroics. Curr Opin Solid State Mater Sci 9:128–139

    Article  Google Scholar 

  86. Wang J, Scholl A, Zheng H, Ogale SB, Viehland D, Schlom DG, Spaldin NA, Rabe KM, Wuttig M, Mohaddes L, Neaton J, Waghmare U, Zhao T, Ramesh R (2005) Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307:1103959

    Article  Google Scholar 

  87. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761

    Article  CAS  Google Scholar 

  88. Baettig P, Ederer C, Spaldin NA (2005) First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: structure, polarization, and magnetic ordering temperature. Phys Rev B 72:214105

    Article  Google Scholar 

  89. Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401

    Article  Google Scholar 

  90. Eerenstein W, Morrison FD, Dho J, Blamire MG, Scott JF, Mathur ND (2005) Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307:1203

    Article  CAS  Google Scholar 

  91. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater 5:823–829

    Article  CAS  Google Scholar 

  92. Nogues J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232

    Article  CAS  Google Scholar 

  93. Bea H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthelemy A (2006) Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 89:242114

    Article  Google Scholar 

  94. Dho JH, Qi XD, Kim H, MacManus-Driscoll JL, Blamire MG (2006) Large electric polarization and exchange bias in multiferroic BiFeO3. Adv Mater 18:1445

    Article  CAS  Google Scholar 

  95. Martin LW, Chu YH, Zhan Q, Ramesh R, Han SJ, Wang SX, Warusawithana M, Schlom DG (2007) Room temperature exchange bias and spin valves based on \({\mathrm{BiFeO}}_{3}/{\mathrm{SrRuO}}_{3}/{\mathrm{SrTiO}}_{3}/\mathrm{Si}\) (001) heterostructures. Appl Phys Lett 91:172513

    Article  Google Scholar 

  96. Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P, Han SJ, Lee D, Wang SX, Ramesh R (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050–2055

    Article  CAS  Google Scholar 

  97. Chu YH, Martin LW, Holcomb MB, Gajek M, Han SJ, He Q, Balke N, Yang CH, Lee D, Hu W, Zhan Q, Yang PL, Fraile-Rodriguez A, Scholl A, Wang SX, Ramesh R (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7: 678–678

    Article  CAS  Google Scholar 

  98. Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:022511

    Article  Google Scholar 

  99. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303:661–663

    Article  CAS  Google Scholar 

  100. Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang SY, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom DG, Suzuki Y, Ramesh R (2005) Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett 5:1793–1796

    Article  CAS  Google Scholar 

  101. Zavaliche F, Zhao T, Zheng H, Straub F, Cruz MP, Yang PL, Hao D, Ramesh R (2007) Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett 7:1586–1590

    Article  CAS  Google Scholar 

  102. Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan JC, van der Wiel WG, Rijnders G, Blank DHA, Hilgenkamp H (2007) Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6:493–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, J., West, K.G., Wolf, S.A. (2010). Novel Magnetic Oxide Thin Films. In: Ramanathan, S. (eds) Thin Film Metal-Oxides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0664-9_3

Download citation

Publish with us

Policies and ethics