Skip to main content

10 Years RHT: A Review of Concrete Modelling and Hydrocode Applications

  • Chapter
  • First Online:
Predictive Modeling of Dynamic Processes

Abstract

The RHT concrete model has been developed at Ernst-Mach-Institut 10 years ago. It is combines detailed trixial strength descriptions at moderated strain rates before and beyond damage with non-linear equation of state properties for strong shock waves. The model is readily available to all users of the commercial hydrocode AUTODYN and continuously supported since the year 2000. Over the last decade it has found numerous worldwide applications reflected in publications. They deal with dynamic load cases such as projectile and shaped charge penetration, contact detonation, internal and external blast loading. The key aspects during the development at EMI and the validation, discussion and extended use of the model by various research and development organizations are reviewed in the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers S, project progress reports on triaxial test ’swegraphs.ppt’ and ’ch2.pdf’, US Army Corps of Engineers, ERDC-WES, October 2003.

    Google Scholar 

  2. Berg VS, Preece DS, Shaped Charge Induced Concrete Damage Predictions Using RHT Constitutive Modeling, Proceedings International Society of Explosives Engineers, 2004G Volume 2.

    Google Scholar 

  3. Berg VS, Preece DS, Reinforced Concrete Structure Failure Mechanisms resulting from Epxlosive-induced Overpressures, Proceedings International Society of Explosives Engineers, 2004G Volume 2.

    Google Scholar 

  4. Leppänen J, Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tension, Int J Imp Eng 32 (2006) pp1828.

    Article  Google Scholar 

  5. Leppänen J, Experiments and numerical analysis of blast and fragment impacts on concrete. Int J Imp Eng 31 (2005) 843.

    Article  Google Scholar 

  6. Lu Y, Wang Z, Characterization of structural effects from above-ground explosion using coupled numerical simulation, Computers and Structures 84 (2006) pp1729.

    Article  Google Scholar 

  7. Lu Y, Wang Z, Chong K. A comparative study of buried structure in soil subjected to blast loads using 2D and 3D numerical simulations, Soil Dynamics and Earthquake Engineering 25 (2005) pp275.

    Article  Google Scholar 

  8. Malvar LJ, Ross CA. Review of strain rate effects for concrete in tension. ACIMaterial J 95/6 (1998) pp735

    Google Scholar 

  9. Nöldgen M, Riedel W, Fehling E, Thoma K, Impact on structural Ultra High Performance Concrete (UHPC) elements in high-rise buildings, 2nd Int Symp on Ultra High Performance Concrete, 2008, pp. 759.

    Google Scholar 

  10. Nöldgen M, Riedel W, Thoma K, Fehling E, SECURITY SCRAPER – A Comprehensive Concept for Future High-Rise-Buildings, Future Security 3rd Security Research Conference Karlsruhe Sept. 10,11, 2008.

    Google Scholar 

  11. Preece D, Chung SH. Blast Induced Rock Fragmentation Prediction using the RHT Constitutive Material for Brittle Materials, Proceedings of the 2gth Annual Symposium on Explosives and Blasting Research, Society of Explosives Engineers, Nashville, TN, 2003.

    Google Scholar 

  12. Riedel W, Thoma K, Hiermaier S, Schmolinske E, Penetration of Reinforced Concrete by BETA-B-500, Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes.Proc. (CD-ROM) 9. Int Symposion on the Interaction of the Effects of Munitions with Structures, Berlin Strausberg (1999) pp315.

    Google Scholar 

  13. Riedel W, Beton unter dynamischen Lasten: Meso- und makromechanische Modelle und ihre Parameter, Hrsg.: Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut EMI, Freiburg/Brsg., Fraunhofer IRB Verlag 2004, ISBN 3-8167-6340-5, http://www.irbdirekt.de/irbbuch/

  14. RiedelW,Mayrhofer C, Customized CalculationMethods for Explosion Effects on Structural Building Components, Proc. Int. Symp. on Structures under Earthquake, Impact and Blast Loading 2008, Ed. Tachinaba, E., Katayama, M., Mukai, Y., Osaka, 2008.

    Google Scholar 

  15. Riedel W, Wicklein M, Thoma K, Shock Properties of Conventional and High Strength Concrete, Experimental andMesomechanical Analysis, International Journal of Impact Engineering 35/3 (2008), pp155.

    Article  Google Scholar 

  16. Riedel W, Kawai N, Kondo K, Numerical Assessment for Impact Strength Measurements in Concrete Materials, International Journal of Impact Engineering 36 (2009), pp283.

    Article  Google Scholar 

  17. Tham CY, Reinforced concrete perforation and penetration simulation using AUTODYN-3D, Finite Element in Analysis and Design, 41 (2005) pp1401.

    Article  Google Scholar 

  18. Hansson H, Penetration in concrete for projectiles with L/D-9, FOI-R–1659–SE, ISSN 1650- 1942, Stockholm 2005, www.foi.se

  19. Hansson H, Simulation of penetration in normal strength concrete for a projectile with L/D=9. FOI-R–1759–SE, ISSN 1650-1942, Stockholm 2005 www.foi.se

  20. Klein H, Untersuchung zur Impakt- und Detonationswirkung einer Sprengbombe auf verschiedene Betonziele, EMI-Bericht I33/08, Freiburg 2009.

    Google Scholar 

  21. Bazant ZP, Xiang Y, Prat PC: Microplane Model for Concrete, I: Stress-Strain Boundaries and Finite Strain. Journal of Engineering Mechanics, März 1996, S. 245-254.

    Google Scholar 

  22. CEB-FIB Model Code 1990. Design Code. Lausanne, Switzerland: Thomas Telford; 1993 pp437.

    Google Scholar 

  23. Chen WF, Plasticity in Reinforced Concrete. McGraw Hill, New York, 1982. - ISBN 0-07-010687-8.

    Google Scholar 

  24. Clegg RA, White DM, Riedel W, Harwick W, Hypervelocity impact damage prediction of composites: Part I – material model and characterisation, Int J Imp Eng, 33 (2006) pp190.

    Article  Google Scholar 

  25. Daddazio R, Vaughan D, Levine H, Two tools for the evaluation of the effects of blast on buildings Proc. Int. Symp. on Structures under Earthquake, Impact and Blast Loading 2008, Ed. Tachinaba, E., Katayama, M., Mukai, Y., Osaka, 2008.

    Google Scholar 

  26. Erkander A, Petterson L, Concrete as a protective barrier against fragment impacts: Fragment impacts on plates made of different concretes (in Swedish), FOA report C 20574-D6(D4), Swedish Defence Research Agency, 1985 pp66.

    Google Scholar 

  27. Gebbeken N, Greulich S, Pietzsch A, Landmann, F, (2004) The Engineering-Tool XPLOSIM to Determine the Effects of Explosive Loadings on Reinforced and Fibre Reinforced Concrete Structures, Proc. of 18th Int Symp Military Aspects of Blast and Shock, CD-ROM.

    Google Scholar 

  28. Gebbeken N, Greulich S, Pietzsch A, Harmann Th, Modellbildung zur Simulation von Stahlfaserbeton unter hochdynamischer Belastung, Ernst & Sohn , Beton – und Stahlbetonbau 103 (2008), pp398.

    Article  Google Scholar 

  29. Gebbeken N, Greulich S, Pietzsch A. Hugoniot properties for concrete determined by fullscaledetonation experiments and flyer-plate-impact tests, Int J Impact Engineering 32 (2006) 2017.

    Article  Google Scholar 

  30. Gebbeken N and Ruppert M, A new concrete material model for high dynamic hydrocode simulations”, Archive of Applied Mechanics, 70, 463-478, 2000.

    Article  MATH  Google Scholar 

  31. Grady DE and Furnish MD, Shock and Release Wave Properties of MJ-2 Grout. Sandia National Laboratories Rept., SAND88-1642, Dezember 1988.

    Google Scholar 

  32. Grady DE, Impact Compression Properties of Concrete. Proc. 6th Int. Symposium on Interaction of Nonnuclear Munitions with Structures, Panama City, Florida, May 3-7, 1993.

    Google Scholar 

  33. Grady DE, Shock and Release Data for SAC-5 Concrete to 25 GPa. Sandia National Laboratories Technical Memorandum - TMDG0595, Oktober 1995.

    Google Scholar 

  34. Hanchak SJ, Forrestal MJ, Young ER, Ehrgott JQ, Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) compressive strengths, Int. J. Impact Eng. 12 (1992) pp1.

    Article  Google Scholar 

  35. Holmquist TJ, Johnson GR, CookWH, A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. Proc. 14th International Symposium on Ballistics, Qu’ebec, 1993, S. 591-600.

    Google Scholar 

  36. Langheim H, Stilp A, EMI report V2-86, Ernst-Mach-Institut Freiburg 1986.

    Google Scholar 

  37. Malvar LJ, Crawford JE, Wesevich JW, Simons D, A plasticity concrete mode for Dyna 3D, Int J Imp Eng 19 (1997) 847-873

    Article  Google Scholar 

  38. Mould JC, Levine HS, A rate-dependent three-invariant softening model for concrete, Studies in Applied Mechnics, Mechanics of Materials and Structures, Voyiadjis et al (Eds), Elsevier, 1994.

    Google Scholar 

  39. Millon O, RiedelW, Thoma K, NöldgenM, Fiber-reinforced ultra-high performance concrete under tensile loads, submitted to Journal de Physique, 2009.

    Google Scholar 

  40. Ockert J, Ein Stoffgesetz für die Schockwellenausbreitung in Beton. Dissertation Technische Hochschule Karlsruhe, 1997

    Google Scholar 

  41. RiedelW, Nahme H, Thoma K, Equation of State Properties ofModern CompositeMaterials, Modeling Shock, Release and Spallation, CP706, Shock Compression of Condensed Matter – 2003, 701-704, Ed. M.D. Furnish, Y.M. Gupta,.W. Forbes, American Institute of Physics 0-7354-0181-0/04, 2004.

    Google Scholar 

  42. N.N., AUTODYN, Theory Manual, Century Dynamics Ltd. Horsham, UK, 2003.

    Google Scholar 

  43. N.N., SPAn32 Version 1.2.7.2., Army Engineer District Omaha, CENWO-ED-SH, Protective Design Center, 2001.

    Google Scholar 

  44. Sugano T, Tsubota H, Kasai Y, Koshika N, Ohnuma H, von Riesemann WA, Bickel DC and Parks MB, Full-scale aircraft impact test for evaluation of impact force, Nuclear Engineering and Design, 140:373–385, 1993.

    Article  Google Scholar 

  45. Schuler H, Hansson H, Fracture behaviour of High Performance Concrete (HPC) investigated with a Hopkinson-Bar, J. Phys. IV France 134 (2006) 1145-1151.

    Article  Google Scholar 

  46. Witte, Beschleunigungs-, Dehnungs- undWegmessung an einer Stahlbetonplatte bei Penetrationsversuchen mit NVA-Munition, 5. und 6. Versuch, WTD91/200 – Nr. 203/98, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Riedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Riedel, W. (2009). 10 Years RHT: A Review of Concrete Modelling and Hydrocode Applications. In: Hiermaier, S. (eds) Predictive Modeling of Dynamic Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0727-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0727-1_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0726-4

  • Online ISBN: 978-1-4419-0727-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics