Skip to main content

Perception of Intra-saccadic Motion

  • Chapter
  • First Online:
Dynamics of Visual Motion Processing

Abstract

A typical saccadic eye movement lasts about 40 ms. During this short period of time, the image of the stationary world around us rapidly moves on the retina with a complex accelerating and decelerating profile. The reason why this 40 ms retinal motion flow does not elicit motion perception in everyday life is an issue that has received considerable interest. The present chapter first presents a brief history of the main ideas and experiments bearing on this issue since the seventies. Some key experimental paradigms and results in psychophysics are then described in detail. Finally, some suggestions for future investigations, both psychophysical and physiological, are made. A major goal of the chapter is to pinpoint some fundamental confusions that are often encountered in the literature. It is hoped that understanding these confusions will help identify more clearly the theoretical points – among which the role of temporal masking – on which scientists strongly disagree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should noted that this intra-saccadic manipulation is not a necessity. Ideally, these experiments should be carried out in the following way : the pre-saccadic target should be extinguished just before saccade onset and then displayed again right after saccade offset with a spatial shift. This would actually be the cleanest way of investigating the trans-saccadic integration issue, but it is currently impossible to perform this manipulation online because of technical limitations.

  2. 2.

    The absence of a control for temporal masking effects is particularly annoying as illustrated by a finding that was emphasized in Thiele et al. (2002). The authors described a small subset of neurons that seemed to reverse their direction-selectivity only in the active condition. However, we already noted that this reversal response was much too late (it peaked 150 ms after saccade onset) to be interpreted as the result of an anticipatory suppressive extra-retinal influence (Castet et al. 2002). Moreover, Price et al. (2005) found no evidence for this reversal in direction tuning when analysing responses within 25–75 ms after saccade onset.

References

  • Anstis SM (1970) Phi movement as a subtraction process. Vision Res 10:1411–1430

    Article  PubMed  CAS  Google Scholar 

  • Bachmann T (1994) Psychophysiology of visual masking. Nova Science Publishers, New York

    Google Scholar 

  • Bair W, O’Keefe LP (1998) The influence of fixational eye movements on the response of neurons in area MT of the macaque. Visual Neurosci 15:779–786

    Article  CAS  Google Scholar 

  • Baylor DA (1987) Photoreceptor signals and vision. Investig Ophthalmol Visual Sci 28:34–49

    CAS  Google Scholar 

  • Benardete EA, Kaplan E (1997) The receptive field of the primate P retinal ganglion cell, I: Linear dynamics. Visual Neurosci 14:169–185

    Article  CAS  Google Scholar 

  • Benardete EA, Kaplan E (1999) The dynamics of primate M retinal ganglion cells. Visual Neurosci 16:355–368

    Article  CAS  Google Scholar 

  • Breitmeyer BG (1984) Visual masking: an integrative approach. Oxford University Press, New York

    Google Scholar 

  • Breitmeyer BG, Ganz L (1976) Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol Rev 83:1–36

    Article  PubMed  CAS  Google Scholar 

  • Breitmeyer BG, Ogmen H (2000) Recent models and findings in visual backward masking: a comparison, review, and update. Perception Psychophys 62:1572–1595

    Article  CAS  Google Scholar 

  • Breitmeyer BG, Ögmen H (2006) Visual masking: Time slices through conscious and unconscious vision. Oxford University Press, New York

    Google Scholar 

  • Bridgeman B, Hendry D, Stark (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15:719–722

    Google Scholar 

  • Bridgeman B, Van der Heijden AHC, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–292

    Article  Google Scholar 

  • Burr D, Morrone MC (2004) Visual perception during saccades. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 2. MIT Press, Cambridge, Massachusetts, pp 1391–1401

    Google Scholar 

  • Burr DC, Holt J, Johnstone JR, Ross J (1982) Selective depression of motion sensitivity during saccades. J Physiol (London) 333:1–15

    CAS  Google Scholar 

  • Burr, DC, & Ross, J (1982) Contrast sensitivity at high velocities. Vision Res 22:479–484

    Google Scholar 

  • Burr DC, Morrone MC, Ross J (1994) Selective suppression of the magnocellular `visual pathway during saccadic eye movements. Nature 371:511–513

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Morgan MJ, Morrone MC (1999) Saccadic suppression precedes visual motion analysis. Curr Biol 9:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW, Wurtz RH (1978) Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision Res 18:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Castet E, Masson GS (2000) Motion perception during saccadic eye movements. Nat Neurosci 3:177–183

    Article  PubMed  CAS  Google Scholar 

  • Castet E, Jeanjean S, Masson GS (2001) ‘Saccadic suppression’: no need for an active extra-retinal mechanism. Trends Neurosci 24:316–317

    Google Scholar 

  • Castet E, Jeanjean S, Masson GS (2002) Motion perception of saccade-induced retinal translation. Proc Natl Acad Sci USA 99:15159–15163

    Article  PubMed  CAS  Google Scholar 

  • Crawford BH (1947) Visual adaptation in relation to brief conditioning stimuli. Proc Roy Soc Lond B 134:283–302

    Article  CAS  Google Scholar 

  • Currie CB, McConkie GW, Carlson-Radvansky LA, Irwin DE (2000) The role of the saccade target object in the perception of a visually stable world. Perception Psychophys 62:673–683

    Article  CAS  Google Scholar 

  • David T, Smye S, Jame T, Dabbs T (1997) Time-dependent stress and displacement of the eye wall tissue of the human eye. Med Eng Phys 19:131–139

    Article  PubMed  CAS  Google Scholar 

  • David T, Smye S, Dabbs T, James T (1998) A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys Med Biol 43:1385–1399

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Naccache L, Cohen L, Le Bihan D, Mangin JF, Poline JB, Riviere D (2001) Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci 4:752–758

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res 36:1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Bridgeman B, Schneider WX (1998) Immediate post-saccadic information mediates space constancy. Vision Res 38:3147–3159

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (2002) Transsaccadic memory of position and form. Prog Brain Res 140:165–180

    Article  PubMed  Google Scholar 

  • Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Res 36:985–996

    Google Scholar 

  • Dodge R (1900) Visual perception during eye movements. Psychol Rev 7:454–465

    Article  Google Scholar 

  • Dodge R (1905) The illusion of clear vision during eye movements. Psychol Bull 2:193–199

    Article  Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394

    Google Scholar 

  • Garcia-Perez MA, Peli E (2001) Intrasaccadic perception. J Neurosci 21:7313–7322

    PubMed  CAS  Google Scholar 

  • Georg K, Lappe M (2007) Spatio-temporal contingency of saccade-induced chronostasis. Exp Brain Res 180(3):535–539

    Article  PubMed  Google Scholar 

  • Helmholtz Hv (1866/1924) Helmholtz’s treatise on physiological optics. The Optical Society of America, Electronic edition (2001). University of Pennsylvania. URL: http//psych.upenn.edu/backuslab/helmholtz.

    Google Scholar 

  • Holt EB (1903) Eye-movement and central anaesthesia I. The problem of anaesthesia during eye-movement. Psychol Monogr 4:3–46

    Google Scholar 

  • Hood DC (1998) Lower-level visual processing and models of light adaptation. Annu Rev Psychol 49:503–535

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson MR, Price NS, Crowder NA, Ono S, Mustari MJ (2007) Enhanced motion sensitivity follows saccadic suppression in the superior temporal sulcus of the macaque cortex. Cereb Cortex 17:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Ilg UJ, Hoffmann KP (1993) Motion perception during saccades. Vision Res 33:211–220

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita S, Lupker S (2003) Masked priming: the state of the art. Psychology Press, New York

    Google Scholar 

  • Kleiser R, Seitz RJ, Krekelberg B (2004) Neural correlates of saccadic suppression in humans. Curr Biol 14:386–390

    Article  PubMed  CAS  Google Scholar 

  • Lee BB, Pokorny J, Smith VC, Kremers J (1994) Responses to pulses and sinusoids in macaque ganglion cells. Vision Res 34:3081–3096

    Article  PubMed  CAS  Google Scholar 

  • Levinson E, Sekuler R (1975) The independence of channels in human vision selective for direction of movement. J Physiol (London) 250:347–366

    CAS  Google Scholar 

  • Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229–240

    Article  PubMed  CAS  Google Scholar 

  • Matin E (1974) Saccadic suppression: a review and an analysis. Psychol Bull 81:899–917

    Article  PubMed  CAS  Google Scholar 

  • Matin E, Clymer AB, Matin L (1972) Metacontrast and saccadic suppression. Science 178:179–182

    Article  PubMed  CAS  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    PubMed  CAS  Google Scholar 

  • Pokorny J, Sun VC, Smith VC (2003) Temporal dynamics of early light adaptation. J Vision 3:423–431

    Article  Google Scholar 

  • Poot L, Snippe HP, van Hateren JH (1997) Dynamics of adaptation at high luminances: adaptation is faster after luminance decrements than after luminance increments. J Opt Soc Am A 14:2499–2508

    Article  CAS  Google Scholar 

  • Price NS, Ibbotson MR, Ono S, Mustari MJ (2005) Rapid processing of retinal slip during saccades in macaque area MT. J Neurophysiol 94:235–246

    Article  PubMed  CAS  Google Scholar 

  • Richards W (1968) Visual suppression during passive eye movement. J Opt Soc Am 58:1159–1160

    Article  PubMed  CAS  Google Scholar 

  • Richards W (1969) Saccadic suppression. J Opt Soc Am 59:617–623

    Article  PubMed  CAS  Google Scholar 

  • Riggs LA, Merton PA, Morton HB (1974) Suppression of visual phosphenes during saccadic eye movements. Vision Res 14:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Burr D, Morrone C (1996) Suppression of the magnocellular pathway during saccades. Behav Brain Res 80:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Uchikawa K (1999) Increment-threshold spectral sensitivity during saccadic eye movements in uniform visual field. Vision Res 39:3951–3959

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Godwin LD (1996) Masking of the achromatic system: implications for saccadic suppression. Vision Res 36:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Shioiri S, Cavanagh P (1989) Saccadic suppression of low-level motion. Vision Res 29:915–928

    Article  PubMed  CAS  Google Scholar 

  • Snippe HP, Poot L, van Hateren JH (2000) A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds. Visual Neurosci 17:449–462

    Article  CAS  Google Scholar 

  • Stark L, Kong R, Schwartz S, Hendry D (1976) Saccadic suppression of image displacement. Vision Res 16:1185–1187

    Article  PubMed  CAS  Google Scholar 

  • Thiele A, Henning P, Kubischik M, Hoffmann KP (2002) Neural mechanisms of saccadic suppression. Science 295:2460–2462

    Article  PubMed  CAS  Google Scholar 

  • Thilo KV, Santoro L, Walsh V, Blakemore C (2004) The site of saccadic suppression. Nat Neurosci 7:13–14

    Article  PubMed  CAS  Google Scholar 

  • Uchikawa K, Sato M (1995) Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity. J Opt Soc Am A 12:661–666

    Article  CAS  Google Scholar 

  • Volkmann FC, Riggs LA, White KD, Moore RK (1978) Contrast sensitivity during saccadic eye movements. Vision Res 18:1193–1199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Frédéric Chavane for his helpful comments concerning the possible physiological factors influencing retinal activity during saccades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Castet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castet, E. (2009). Perception of Intra-saccadic Motion. In: Ilg, U., Masson, G. (eds) Dynamics of Visual Motion Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0781-3_10

Download citation

Publish with us

Policies and ethics