Skip to main content

Protein Dynamics

  • Chapter
  • First Online:
The Physics of Proteins

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2775 Accesses

Abstract

Proteins are not static as shown in texts; they fluctuate continuously. Moreover, the “working protein” consists not only of the folded chain of amino acids. Proteins are surrounded by their hydration shell and are embedded in a bulk solvent. The protein proper, the hydration shell, and the bulk solvent are all involved in the protein motions and all three are necessary for the functions. Protein motions are transitions between different conformational substates that are described by the energy landscape (EL ). The energy landscape has already been introduced and will be described in more detail in the present chapter. The experimental exploration of the EL is largely done by studying protein motions. We have therefore put the cart before the horse by treating the EL first. The reason is logic. Once the concept of a hierarchical EL is accepted, the existence of various types of motions is a logical consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. E. T. Iben et al. Glassy behavior of a protein. Phys. Rev. Lett., 62:1916–19, 1989.

    Article  ADS  Google Scholar 

  2. J. L. Green, J. Fan, and C. A. Angell. The protein-glass analogy: Some insights from homopeptide comparisons. J. Phys. Chem., 98:13780–90, 1994.

    Article  Google Scholar 

  3. G. I. Makhatadze and P. L. Privalov. Energetics of protein structure. Advan. Protein Chem., 47:307–425, 1994.

    Article  Google Scholar 

  4. G. Sartor, A. Hallbrucker, and E. Mayer. Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass?liquid transition and crystallization behavior on reheating. Biophys. J., 69:2679–94, 1995.

    Article  ADS  Google Scholar 

  5. D. Idiyatullin, I. Nesmelova, V. A. Dargan, and K H. Mayo. Heat capacities and a snapshot of the energy landscape in protein GB1 from the pre-denaturation temperature dependence of backbone NH nanosecond fluctuations. J. Mol. Bio., 325:149–62, 2003.

    Article  Google Scholar 

  6. G. Feher and M. Weissman. Fluctuation spectroscopy: Determination of chemical reaction kinetics from the frequency spectrum of fluctuations. Proc. Natl. Acad. Sci. USA, 70:870–5, 1973.

    Article  ADS  Google Scholar 

  7. M. B. Weissman. Fluctuation spectroscopy. Ann. Rev. Phys. Chem., 32:205–32, 1981.

    Article  ADS  Google Scholar 

  8. G. U. Nienhaus, editor. Protein-Ligand Interactions. Humana Press, Totowa, N.J., 2005.

    Google Scholar 

  9. M. Eigen. New looks and outlooks on physical enzymology. Q. Rev. Biophys., 1:3–33, 1968.

    Article  Google Scholar 

  10. R. Richert and A. Blumen, editors. Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.

    Google Scholar 

  11. M. D. Fayer. Fast protein dynamics probed with infrared vibrational echo experiments. Ann. Rev. Phys. Chem., 52:315–56, 2001.

    Article  ADS  Google Scholar 

  12. H. Fujisaki and J. E. Straub. Vibrational energy relaxation in proteins. Proc. Natl. Acad. Sci. USA, 102:6726–31, 2005.

    Article  ADS  Google Scholar 

  13. M. Gruebele and P. G. Wolynes. Vibrational energy flow and chemical reactions. Acc. Chem. Res., 37:261–7, 2004.

    Article  Google Scholar 

  14. Q. Ciu and I. Bahar, editors. Normal Mode Analysis. Theory and Applications to Biological and Chemical Systems. Chapman and Hall/CRC, New York, 2006.

    Google Scholar 

  15. C. Kittel. Introduction to Solid State Physics, 4th edition. Wiley, New York, 1971.

    Google Scholar 

  16. K. Hinsen. Normal mode theory and harmonic potential approximations. In Q. Ciu and I. Bahar, editors, Normal Mode Analysis. Theory and Applications to Biological and Chemical Systems. Chapman and Hall/CRC, New York, 2006.

    Google Scholar 

  17. B. Melchers, E. W. Knapp, F. Parak, L. Cordone, A. Cupane, and M. Leone. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys. J., 70:2092–9, 1996.

    Article  ADS  Google Scholar 

  18. K. Achterhold, C. Keppler, A. Ostermann, U. van Buerck, W. Sturhan, E. E. Alp, and F. G. Parak. Vibrational dynamics of myoglobin determined by the phonon-assisted Mössbauer effect. Phys. Rev. E., 65:061916, 2002.

    Article  ADS  Google Scholar 

  19. B. M. Leu et al. Vibrational dynamics of biological molecules: Multi-quantum contributions. J. Phys. Chem. Solids, 66:2250–6, 2005.

    Article  ADS  Google Scholar 

  20. A. E. Garcia. Large-amplitude nonlinear motions in proteins. Phys. Rv. Lett., 68:2696–9, 1992.

    Article  ADS  Google Scholar 

  21. A. Kitao, S. Hayward, and N. Go. Energy landscape of a native protein: Jumping-among-minima model. PROTEINS: Structure, Function, and Genetics, 33:496–517, 1998.

    Article  Google Scholar 

  22. O. M. Becker, A. D. MacKerell, Jr., B. Roux, and M. Watanabe, editors. Computational Biochemistry and Biophysics. Marcel Decker, Inc., New York, 2001.

    Google Scholar 

  23. A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young. Protein states and protein quakes. Proc. Natl. Acad. Sci. USA, 82:5000–4, 1985.

    Article  ADS  Google Scholar 

  24. T.-Y. Teng, V. Srajer, and K. Moffat. Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Nature Structural Biology, 1:701–5, 1994.

    Article  Google Scholar 

  25. D. Bourgeois, B Vallone, A. Arcovito, G. Sciara, F. Schotte, P. A. Anfinrud, and M. Brunori. Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. Proc. Natl. Acad. Sci. USA, 103:4924–9, 2006.

    Article  ADS  Google Scholar 

  26. R. J. Miller. Energetics and dynamics of deterministic protein motion. Acc. Chem. Res., 27:145–50, 1994.

    Article  Google Scholar 

  27. A. M. Nagy, V. Raicu, and R. J. D. Miller. Nonlinear optical studies of heme protein dynamics: Implications for proteins as hybrid states of matter. Biochimica et Biophysica Acta, 1749:148–72, 2005.

    Article  Google Scholar 

  28. A. Xie, L. Kelemen, J. Hendriks, B. J. White, K. J. Hellingwerf, and W. D. Hoff. Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation. Biochemistry, 40:1510–7, 2001.

    Article  Google Scholar 

  29. K. Ito and M. Sasai. Dynamical transition and protein quake in photoactive yellow protein. Proc. Natl. Acad. Sci. USA, 101:14736–41, 2004.

    Article  ADS  Google Scholar 

  30. J. N. Onuchic and P. G. Wolynes. Energy landscapes, glass transitions, and chemical reaction dynamics in biomolecular or solvent environment. J. Chem. Phys., 93:2218–24, 1993.

    Article  ADS  Google Scholar 

  31. S. Dellerue, A.-J. Petrescu, J. C. Smith, and M.-C. Bellissent-Funel. Radially softening diffusive motions in globular protein. Biophys. J., 81:1666–76, 2001.

    Article  Google Scholar 

  32. N. Miyashita, J. N. Onuchic, and P. G. Wolynes. Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc. Natl. Acad. Sci. USA, 100:12570–5, 2003.

    Google Scholar 

  33. O. Miyashita, P. G. Wolynes, and J. N. Onuchic. Simple energy landscape model for the kinetics of functional transitions in proteins. J. Phys. Chem. B, 109:1959–69, 2005.

    Article  Google Scholar 

  34. K. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes. Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics silmulations. Proc. Natl. Acad. Sci. USA, 103:11844–9, 2006.

    Google Scholar 

  35. N. Agmon and J. J. Hopfield. Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys., 78:6947–59, 1983.

    Article  ADS  Google Scholar 

  36. N. Agmon and J. J. Hopfield. CO binding to heme proteins: A model for barrier height distributions and slow conformational changes. J. Chem. Phys., 79:2042–53, 1983.

    Article  ADS  Google Scholar 

  37. M. Lim, T. A. Jackson, and P. A. Anfinrud. Nonexponential protein relaxation: Dynamics of conformational change in myoglobin. Proc. Natl. Acad. Sci. USA, 90:5801–4, 1993.

    Article  ADS  Google Scholar 

  38. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorenson, and K. T. Yue. Solvent viscosity and protein dynamics. Biochemistry, 19:5147, 1980.

    Article  Google Scholar 

  39. W. Doster. Viscosity scaling and protein dynamics. Biophys. Chem., 17:97–103, 1983.

    Article  Google Scholar 

  40. J. T. Sage, K. T. Shoemaker, and P. M. Champion. Solvent-dependent structure and dynamics in myoglobin. J. Phys. Chem., 99:3394–3405, 1995.

    Article  Google Scholar 

  41. T. Kleinert, W. Doster, H. Leyser, W. Petry, V. Schwarz, and M. Settles. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry, 37:717–33, 1998.

    Article  Google Scholar 

  42. Y. Shibata, A. Kurita, and T. Kushida. Solvent effects on conformational dynamics of Zn-substituted myoglobin observed by time-resolved hole-burning spectroscopy. Biochemistry, 38:1789–1801, 1999.

    Article  Google Scholar 

  43. A. Ansari. Langevin modes analysis of myoglobin. J. Chem. Phys., 110:1774–80, 1999.

    Article  ADS  Google Scholar 

  44. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA, 99:16047–51, 2002.

    Article  ADS  Google Scholar 

  45. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D. Young. Proteins are paradigms of stochastic complexity. Physica A, 351:1–13, 2005.

    Article  ADS  Google Scholar 

  46. W. Doster, S. Cusack, and W. Petry. Dynamic instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys. Rev. Lett., 65:1080–3, 1990.

    Article  ADS  Google Scholar 

  47. K. Hinsen, A. J. Petrescu, S. Dellerue, M. C. Bellissent-Funel, and G. R. Keller. Liquid-like and solid-like motions in proteins. J. Mol. Liquids, 98-99:381–98, 2002.

    Article  Google Scholar 

  48. H. Frauenfelder, P. W. Fenimore, G. Chen, and B. H. McMahon. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA, 103:15469–72, 2006.

    Article  ADS  Google Scholar 

  49. V. Lubchenko, P. G. Wolynes, and H. Frauenfelder. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J. Phys. Chem. B, 109:7488–99, 2005.

    Article  Google Scholar 

  50. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and R. D. Young. Bulk-solvent and hydration-shell fluctuations, similar to ?- and ?-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA, 101:14408–13, 2004.

    Article  ADS  Google Scholar 

  51. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. Dynamics of ligand binding to myoglobin. Biochemistry, 14:5355–73, 1975.

    Article  Google Scholar 

  52. J. A. Rupley and G. Careri. Protein hydration and function. Adv. Protein Chem., 41:37–172, 1991.

    Article  Google Scholar 

  53. B. Halle. Protein hydration dynamics in solution: A critical survey. Phil. Trans. R. Soc. Lond. B, 359:1207–24, 2004.

    Article  Google Scholar 

  54. Y. Levy and J. N. Onuchic. Water mediation in protein folding and molecular recognition. Ann. Rev. Biophys. Biomol. Struct., 35:398–415, 2006.

    Article  Google Scholar 

  55. V. Helms. Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. ChemPhysChem., 8:23–33, 2007.

    Article  Google Scholar 

  56. H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, and R. D. Young. A unified model of protein dynamics. Proc. Natl. Acad. Sci. USA, 106: 5129–5134, 2009.

    Article  ADS  Google Scholar 

  57. J. Swenson, H. Jansson, and R. Bergman. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett., 96:247802, 1992.

    Article  ADS  Google Scholar 

  58. F. Parak, E. W. Knapp, and D. Kucheida. Protein dynamics–Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Bio., 161:177–94, 1982.

    Article  Google Scholar 

  59. W. Doster, S. Cusack, and W. Petry. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337:754–6, 1989.

    Article  ADS  Google Scholar 

  60. V. I. Goldanski and R. H. Herber, editors. Chemical Applications of Mössbauer Spectroscopy. Academic Press, New York, 1968.

    Google Scholar 

  61. K. Achterhold and F. G. Parak. Protein dynamics: Determination of anisotropic vibrations at the heme iron of myoglobin. J. Phys. : Condens Matter, 15:S1603–92, 2003.

    Google Scholar 

  62. S.-H. Chong et al. Dynamical transition in myoglobin in a crystal: Comparative studies of X-ray crystallography and Mössbauer spectroscopy. Eur. Biophys. J., 30:319–29, 2001.

    Article  Google Scholar 

  63. J. Gafert, H. Pschierer, and J. Friedrich. Proteins and glasses: A relaxation study in the millikelvin range. Phys. Rev. Lett., 74:3704–7, 1995.

    Article  ADS  Google Scholar 

  64. W. E. Moerner. Persistent Spectral Hole-Burning: Science and Applications. Springer, Berln, 1988.

    Book  Google Scholar 

  65. P. Schellenberg and J. Friedrich. Optical spectroscopy and disorder phenomena in polymers, proteins, and glasses. In R. Richert and A. Blumen, editors, Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.

    Google Scholar 

  66. A. Kurita, Y. Shibata, and T. Kushida. Two-level systems in myoglobin probed by non-Lorentzian hole broadening in a termperature-cycling experiment. Phys. Rev. Lett., 74:4349–52, 1995.

    Article  ADS  Google Scholar 

  67. V. V. Ponkratov, J. Friedrich, J. M. Vanderkooi, A. L. Burin, and Y. A. Berlin. Physics of proteins at low temperatures. J. Low Temperature Phys., 137:289–317, 2004.

    Article  ADS  Google Scholar 

  68. V. V. Ponkratov, J. Friedrich, and J. M. Vanderkooi. Hole burning experiments with proteins: Relaxations, fluctuations, and glass-like features. J. Non-Cryst. Solids, 352:4379–86, 2006.

    Article  ADS  Google Scholar 

  69. C. Hofmann, H. Michel, T. J. Aartsma, K. D. Fritsch, and J. Friedrich. Direct observation of tiers in the energy landscape of a chromoprotein. Proc. Natl. Acad. Sci. USA, 100:15534–8, 2003.

    Google Scholar 

  70. J. Schlichter, V. V. Ponkratov, and J. Friedrich. Structural flucuations and aging process in deeply frozen proteins. Low Temperature Physics, 29:795–800, 2003.

    Article  ADS  Google Scholar 

  71. K. Fritsch and J. Friedrich. Spectral diffusion experiments on a myoglobin-like protein: Statistical and individual features of its energy landscape. Physica D, 107:218–24, 1997.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauenfelder, H. (2010). Protein Dynamics. In: Chan, S., Chan, W. (eds) The Physics of Proteins. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1044-8_15

Download citation

Publish with us

Policies and ethics