Skip to main content

Replicative Senescence as an Intrinsic Tumor-Suppressor Mechanism

  • Chapter
  • First Online:
Cellular Senescence and Tumor Suppression
  • 617 Accesses

Abstract

One feature of human carcinomas is their strikingly complex cytogenetic profiles. An important mechanism that can give rise to this level of genomic instability is the functional status of telomeres, the protein-DNA complexes that cap the ends of chromosomes. Telomeres serve to protect eukaryotic chromosomal ends from being recognized as damaged DNA, and growing evidence suggests that critically shortened (dysfunctional) telomeres may help initiate the onset of cancer. Dysfunctional telomeres potently engage the DNA damage response pathway, leading to the onset of cellular senescence when p53 is functional. However, in the absence of p53, dysfunctional telomeres can initiate cancer by promoting genomic instability. In this chapter, I will use mouse models to illustrate the interplay between telomere dysfunction and the development of carcinomas in the setting of an intact or mutated p53-dependent DDR pathway. Dysfunctional telomeres trigger senescence when p53 is functional, thereby protecting epithelial tissues from cancer progression. These results suggest that p53-dependent senescence, induced by dysfunctional telomeres, may be as potent as apoptosis in suppressing tumorigenesis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

Alternative lengthening of telomeres

ATM:

Ataxia-telangiectasia mutated

ATR:

Ataxia-telangiectasia and Rad3 related

BFB:

Breakage-fusion-bridge

DDR:

DNA damage response

DSBs:

DNA double stranded breaks

HDFs:

Human diploid fibroblasts

HR:

Homologous recombination

LOH:

Loss of heterozygosity

MDM2:

Murine double minute 2

NHEJ:

Nonhomologous end joining

NRTs:

Nonreciprocal translocations

OB:

Fold-oligosaccharide/oligonucleotide-binding fold

POT1:

Protection of telomeres 1

SA-β-gal:

Senescence-associated β-galactosidase

Terc:

Telomerase RNA template

Tert:

Telomerase reverse transcriptase

TIN2:

TRF1 interacting protein 2

TRF1:

Telomeric-repeat binding factor 1

TRF2:

Telomeric-repeat binding factor 2

References

  • Adeyinka A, Mertens F, Idvall I, et al. Different patterns of chromosomal imbalances in metastasising and non-metastasising primary breast carcinomas. Int J Cancer. 1999;84:370–375.

    Article  CAS  PubMed  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89:10114–10118.

    Article  CAS  PubMed  Google Scholar 

  • Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–645.

    Article  CAS  PubMed  Google Scholar 

  • Bae N, Baumann P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007;26:323–334.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–637.

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171–1175.

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells [see comments]. Science. 1998;279:349–352.

    Article  CAS  PubMed  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997;3:1271–1274.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–740.

    Article  CAS  PubMed  Google Scholar 

  • Celli G, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol. 2005;7:712–718.

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Khoo C, DePinho RA. Modeling Chromosomal instability and epithelial carcinogenesis in the telomerase deficient mouse. Semin Oncol. 2001;11:227–238.

    CAS  Google Scholar 

  • Chang S, Khoo C, Naylor M, et al. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev. 2003;17:88–100.

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36:877–882.

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97:527–538.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet. 2007;39:99–105.

    Article  CAS  PubMed  Google Scholar 

  • Churikov D, Price CM Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol. 2008;79–84.

    Article  CAS  PubMed  Google Scholar 

  • Cosme-Blanco W, Shen W, Lazar A, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by activating p53-mediated cellular senescence. EMBO Rep. 2007;8:497–503.

    Article  CAS  PubMed  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–1929.

    CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–198.

    Article  PubMed  Google Scholar 

  • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100–2110.

    Article  PubMed  Google Scholar 

  • Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448:1068–10671.

    Article  CAS  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–642.

    Article  PubMed  Google Scholar 

  • Dove WF, Cormier RT, Gould KA, et al. The intestinal epithelium and its neoplasms: genetic, cellular and tissue interactions. Philos Trans R Soc Lond B Biol Sci. 1998;353(1370):915–923.

    Article  CAS  PubMed  Google Scholar 

  • Farazi PA, Glickman J, Jiang S, et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 2003;63:5021–5027.

    CAS  PubMed  Google Scholar 

  • Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell. 2007;11:461–469.

    Article  CAS  PubMed  Google Scholar 

  • García-Cao I, García-Cao M, Tomás-Loba A, et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep. 2006;7:546–552.

    PubMed  Google Scholar 

  • Gire V, Jobling WA, Cgen DJ, et al. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J. 2004;23:2554–2563.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Suarez E, Samper E, Flores JM, et al. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet. 2000;26:114–117.

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis V, Vassiliou L, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907–913.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg RA, Allsopp RC, Chin L, et al. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene. 1998;16:1723–1730.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell. 1999;97:515–525.

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855–4878.

    CAS  PubMed  Google Scholar 

  • Guo X, Deng Y, Lin Y, et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 2007;26:4709–4719.

    Article  CAS  PubMed  Google Scholar 

  • Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell. 2001;106(3):275–286.

    Article  CAS  PubMed  Google Scholar 

  • Hara E, Tsurui H, Shinozaki A, et al. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun. 1991;179:528–534.

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460.

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Kim NW, Prowse KR, et al. Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol. 1994;59:307–315.

    CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  Google Scholar 

  • He H, Multani AS, Cosme-Blanco W, et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J. 2006;25:5180–5190.

    Article  CAS  PubMed  Google Scholar 

  • He H, Wang Y, Guo X, et al. Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol Cell Biol. 2009;29:229–240.

    Article  CAS  PubMed  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, et al. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107:67–77.

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14:501–513.

    Article  CAS  PubMed  Google Scholar 

  • Herrera E, Martinez-A C, Blasco MA. Impaired germinal center reaction in mice with short telomeres. EMBO J. 2000;19:472–481.

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer D, Daniels JP, Takai H, et al. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell. 2006;126:63–77.

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, et al. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  • Jackson SR, Zhu CH, Paulson V et al (2007) Antiadhesive effects of GRN163L – an oligonucleotide N3′- > P5′ thio-phosphoramidate targeting telomerase.Cancer Res 67, 1121–1129

    Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91:649–659.

    Article  CAS  PubMed  Google Scholar 

  • Karlseder J, Broccoli D, Dai Y, et al. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 1999;283:1321–1325.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher C, Kurth I, Lingner J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol. 2005;25:808–818.

    Article  CAS  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Cooke HJ. Hypervariable ultra-long telomeres in mice. Nature. 1990;347:400–402.

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–574.

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Podell ER, Cech TR. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol. 2004;12:1223–1229.

    Article  Google Scholar 

  • Lei M, Zaug AJ, Podell ER, et al. Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem. 2005;280:20449–20456.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet. 2004;36:63–68.

    Article  CAS  PubMed  Google Scholar 

  • Loayza D, De Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature. 2003;423:1013–1018.

    Article  CAS  PubMed  Google Scholar 

  • Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell. 1993;73:347–360.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rivera L, Herrera E, Albar JP, et al. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci USA. 1998;95:10471–10476.

    Article  CAS  PubMed  Google Scholar 

  • Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–569.

    Article  CAS  PubMed  Google Scholar 

  • McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1941;26:143–179.

    Google Scholar 

  • Mendrysa SM, O’Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 2006;20:16–21.

    Article  CAS  PubMed  Google Scholar 

  • Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997;90:785–795.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997;277:955–959.

    Article  CAS  PubMed  Google Scholar 

  • Newbold RF. Genetic control of telomerase and replicative senescence in human and rodent cells. Ciba Found Symp. 1997;211:177–189.

    CAS  PubMed  Google Scholar 

  • O’Hagan RC, Chang S, Maser RS, et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell. 2002;2:149–155.

    Article  PubMed  Google Scholar 

  • Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–334.

    Article  CAS  PubMed  Google Scholar 

  • Prowse KR, Greider CW. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA. 1995;92:4818–4822.

    Article  CAS  PubMed  Google Scholar 

  • Prowse KR, Avilion AA, Greider CW. Identification of a nonprocessive telomerase activity from mouse cells. Proc Natl Acad Sci USA. 1993;90:1493–1497.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96:701–712.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KL, Millard M, Bosenberg MW, et al. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet. 2001;28:155–159.

    Article  CAS  PubMed  Google Scholar 

  • Samper E, Flores JM, Blasco MA. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2001;2:800–807.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85:27–37.

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–791.

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res. 1991;196:33–39.

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Van Der Haegen BA, Ying Y, et al. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res. 1993;209:45–52.

    Article  CAS  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002;21:4338–4438.

    Article  CAS  PubMed  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13:1549–1556.

    Article  CAS  PubMed  Google Scholar 

  • Van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92:401–413.

    Article  PubMed  Google Scholar 

  • Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8:279–282.

    Article  CAS  PubMed  Google Scholar 

  • Veldman T, Etheridge KT, Counter CM. Loss of hPot1 function leads to telomere instability and a cut-like phenotype. Curr Biol. 2004;14:2264–2270.

    Article  CAS  PubMed  Google Scholar 

  • Veloso M, Wrba F, Kaserer K, et al. p53 gene status and expression of p53, mdm2, and p21Waf1/Cip1 proteins in colorectal cancer. Virchows Arch. 2000;437:241–247.

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445:661–665.

    Article  CAS  PubMed  Google Scholar 

  • Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447:924–931.

    Article  CAS  PubMed  Google Scholar 

  • Weng NP, Granger L, Hodes RJ. Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci USA. 1997;94:10827–10832.

    Article  CAS  PubMed  Google Scholar 

  • Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol. 1992;27:383–389.

    Article  CAS  PubMed  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE, et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–179.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Multani AS, He H, et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 2006;126:49–62.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Zheng YL, Harris CC. POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol. 2005;25:1070–1080.

    Article  CAS  PubMed  Google Scholar 

  • Zijlmans JM, Martens UM, Poon SS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA. 1997;94:7423–7428.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, S. (2010). Replicative Senescence as an Intrinsic Tumor-Suppressor Mechanism. In: Adams, P., Sedivy, J. (eds) Cellular Senescence and Tumor Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1075-2_8

Download citation

Publish with us

Policies and ethics