Skip to main content

Learning Disabilities

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Learning disability (LD) refers to a condition in which a child fails to develop adequate academic skills, such as reading, writing, or calculation. LDs involve inadequate development of academic skills, rather than representing a loss of previously acquired function, although brain lesions may certainly result in cognitive deficits that affect reading, writing, and calculation (for a review, see Heilman and Valenstein) [1]. Most research on LDs has involved children, who are the focus of this chapter. For a review of LDs in adults, the interested reader is referred to Mapou [2]. In this chapter, we will first present a conceptual overview of LDs and types of LDs. Second, we will offer recommendations on how to effectively triage children who present with academic skill deficits. Third, we will cover some of the fundamental mechanisms involved in LDs that have been identified in neuropsychological and imaging studies. We will conclude by mentioning some recent interventions that appear promising for remediating academic skill deficits among children with LDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heilman KM, Valenstein E. Clinical neuropsychology, vol. xv. 4th ed. Oxford: Oxford University Press; 2003. 716p.

    Google Scholar 

  2. Mapou, RL. Adult learning disabilities and ADHD: research-informed assessment. New York, NY: Oxford University Press; 2009.

    Google Scholar 

  3. Fletcher JM, Lyon GR, Fuchs LS, Barnes MA. Learning disabilities: from identification to intervention. New York, NY: Guilford Press; 2007. p. 324.

    Google Scholar 

  4. Dombrowski SC, Kamphaus RW, Reynolds CR. After the demise of the discrepancy: proposed learning disabilities diagnostic criteria. Prof Psychol Res Pr. 2004;35: 364–72.

    Article  Google Scholar 

  5. Bloom B, Dey AN. Summary health statistics for US children: National Health Interview Survey, 2004. Vital Health Stat 10. 2006;227:1–85.

    PubMed  Google Scholar 

  6. Altarac M, Saroha E. Lifetime prevalence of learning disability among US children. Pediatrics. 2007;119 (Suppl 1):S77–83.

    Article  PubMed  Google Scholar 

  7. US Department of Education OoSEaRSO, Office of special education programs (OSEP), data analysis system (DANS), 1976–2006. Percentage of children and youth ages 3–21 served under the Individuals with Disabilities Education Act (IDEA), by disability: selected years, 1976–77 through 2006–07. Vol. 2008; 2008

    Google Scholar 

  8. Shaywitz SE. Current concepts: dyslexia. N Engl J Med. 1998;338:307–12.

    Article  PubMed  Google Scholar 

  9. Disabilities ICoL. Learning disabilities: a report to the US Congress. Washington, DC: US Printing Office; 1987.

    Google Scholar 

  10. Shaywitz SE, Gruen JR, Shaywitz BA. Management of dyslexia, its rationale, and underlying neurobiology. Pediatr Clin North Am. 2007;54:609–23, viii.

    Article  PubMed  Google Scholar 

  11. Rutter M, Caspi A, Fergusson D, et al. Sex differences in developmental reading disability: new findings from 4 epidemiological studies. J Am Med Assoc. 2004;291:2007–12.

    Article  Google Scholar 

  12. Lyon GR, Fletcher JM, Barnes MC. Learning disabilities. In: Mash EJ, Barkley RA, editors. Child psychopathology. 2nd ed. New York, NY: Guilford Press; 2003. p. 468–500.

    Google Scholar 

  13. Hooper SR, Swartz CW, Montgomery JW, et al. Prevalence of writing problems across three middle school samples. School Psychol Rev. 1993;22:610–22.

    Google Scholar 

  14. Fletcher JM, Francis DJ, Morris RD, Lyon GR. Evidence-based assessment of learning disabilities in children and adolescents. J Clin Child Adolesc Psychol. 2005;34:506–22.

    Article  PubMed  Google Scholar 

  15. Strauss E, Sherman EMS, Spreen O. A compendium of neuropsychological tests: administration, norms, and commentary, vol. xvii. 3rd ed. Oxford, NY: Oxford University Press; 2006. 1216p.

    Google Scholar 

  16. Breier JI, Brookshire BL, Fletcher JM, et al. Identification of side of seizure onset in temporal lobe epilepsy using memory tests in the context of reading deficits. J Clin Exp Neuropsychol. 1997;19:161–71.

    Article  PubMed  Google Scholar 

  17. Mather N, Gregg N. Specific learning disabilities: clarifying, not eliminating, a construct. Prof Psychol Res Pr. 2006;37:99–106.

    Article  Google Scholar 

  18. Silver CH, Blackburn LB, Arffa S, et al. The importance of neuropsychological assessment for the evaluation of childhood learning disorders NAN Policy and Planning Committee. Arch Clin Neuropsychol. 2006;21:741–4.

    Article  PubMed  Google Scholar 

  19. Scarborough HS. Very early language deficits in dyslexic children. Child Dev. 1990;61:1728–43.

    Article  PubMed  Google Scholar 

  20. DeFries JC, Fulker DW, LaBuda MC. Evidence for a genetic aetiology in reading disability of twins. Nature. 1987;329:537–9.

    Article  PubMed  Google Scholar 

  21. Grigorenko EL. Developmental dyslexia: an update on genes, brains, and environments. J Child Psychol Psychiatry. 2001;42:91–125.

    Article  PubMed  Google Scholar 

  22. Byrne B, Samuelsson S, Wadsworth S, et al. Longitudinal twin study of early literacy development: preschool through grade 1. Read Writ. 2007;20:77–102.

    Article  Google Scholar 

  23. Petrill SA, Deater-Deckard K, Thompson LA, et al. Genetic and environmental effects of serial naming and phonological awareness on early reading outcomes. J Educ Psychol. 2006;98:112–21.

    Article  PubMed  Google Scholar 

  24. Meng H, Smith SD. Hager K et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA. 2005;102:17053–8.

    Article  PubMed  Google Scholar 

  25. Alarcon M, DeFries JC, Light JG, Pennington BF. A twin study of mathematics disability. J Learn Disabil. 1997;30:617–23.

    Article  PubMed  Google Scholar 

  26. Bates TC, Castles A, Coltheart M, et al. Behaviour genetic analyses of reading and spelling: a component processes approach. Aust J Psychol. 2004;56:115–26.

    Article  Google Scholar 

  27. Dejerine J. Sur un cas de cecite verbale avec agraphie, suivi d‘autopsie. Mémoires de la Société Biologique. 1891;3:197–201.

    Google Scholar 

  28. Gerstmann J. Syndrome of finger agnosia, disorientation for right and left, agraphia, and acalculia. Arch Neurol Psychiatry. 1940;44:398–408.

    Article  Google Scholar 

  29. Hecaen H, Angelergues R, Houillier S. Les varietes cliniques des acalculies aucours des lesions retro-rolandiques: approche statistique du probleme. Revue Neurologique. 1961;105:85–103.

    PubMed  Google Scholar 

  30. Hecaen H, Marcie P. [Agraphia in the course of conduction aphasia]. Wien Z Nervenheilkd Grenzgeb. 1967;25:193–203.

    PubMed  Google Scholar 

  31. Demb JB, Boynton GM, Heeger DH. Brain activity in visual cortex predicts individual differences in reading performance. Proc Natl Acad Sci USA. 1997;94:13363–6.

    Article  PubMed  Google Scholar 

  32. Stein J, Walsh V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 1997;20:147–52.

    Article  PubMed  Google Scholar 

  33. Tallal P. Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang. 1980;9:182–98.

    Article  PubMed  Google Scholar 

  34. Tallal P, Stark RE, Kallman C, Mellits D. Developmental dysphasia: relation between acoustic processing deficits and verbal processing. Neuropsychologia. 1980;18:273–84.

    Article  PubMed  Google Scholar 

  35. Nicolson R, Fawcett AJ, Dean P. Dyslexia, development and the cerebellum. Trends Neurosci. 2001;24:515–6.

    Article  PubMed  Google Scholar 

  36. Nicolson RI, Fawcett AJ, Berry EL, et al. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353:1662–7.

    Article  PubMed  Google Scholar 

  37. Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24:508–11.

    Article  PubMed  Google Scholar 

  38. Ramus F, Rosen S, Dakin SC, et al. Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain. 2003;126:841–65.

    Article  PubMed  Google Scholar 

  39. Wolf M, Bowers P. The double-deficit hypothesis for the developmental dyslexias. J Educ Psychol. 1999;91:415–38.

    Article  Google Scholar 

  40. Wolf M, O‘Rourke AG, Gidney C, Lovett MW, Cirino P, Morris R. The second deficit: an investigation of the independence of phonological and naming-speed deficits in developmental dyslexia. Read Writ. 2002;15:43–72.

    Article  Google Scholar 

  41. Vukovic RK, Siegel LS. The double-deficit hypothesis: a comprehensive analysis of the evidence. J Learn Disabil. 2006;29:25–47.

    Article  Google Scholar 

  42. Katzir T, Kim YS, Wolf M, Morris R, Lovett W. The varieties of pathways to dysfluent reading: comparing subtypes of children with dyslexia at letter, word, and connected text levels of reading. J Learn Disabil. 2008;41:47–66.

    Article  PubMed  Google Scholar 

  43. Schlaggar BL, McCandliss BD. Development of neural systems for reading. Annu Rev Neurosci. 2007;30:475–503.

    Article  PubMed  Google Scholar 

  44. Fiez JA, Petersen SE. Neuroimaging studies of word reading. Proc Natl Acad Sci USA. 1998;95:914–21.

    Article  PubMed  Google Scholar 

  45. Brunswick N, McCrory E, Price CJ, et al. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: a search for Wernicke’s Wortschatz? Brain. 1999;122(Pt 10):1901–17.

    Article  PubMed  Google Scholar 

  46. Paulesu E, Frith U, Snowling M, et al. Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain. 1996;119(Pt 1):143–57.

    Article  PubMed  Google Scholar 

  47. Cohen L, Dehaene S, Naccache L, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000;123(Pt 2):291–307.

    Article  PubMed  Google Scholar 

  48. McCandliss BD, Cohen L, Dehaene S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci. 2003;7:293–99.

    Article  PubMed  Google Scholar 

  49. Shaywitz BA, Shaywitz SE, Blachman BA, et al. Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biol Psychiatry. 2004;55:926–33.

    Article  PubMed  Google Scholar 

  50. Shaywitz SE, Shaywitz BA, Pugh KR, et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci USA. 1998;95:2636–41.

    Article  PubMed  Google Scholar 

  51. Temple E, Poldrack RA, Salidis J, et al. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. NeuroReport. 2001;12:299–307.

    Article  PubMed  Google Scholar 

  52. Hoeft F, Hernandez A, McMillon G, et al. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J Neurosci. 2006;26:10700–8.

    Article  PubMed  Google Scholar 

  53. Hoeft F, Meyler A, Hernandez A, et al. Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl Acad Sci USA. 2007;104:4234–9.

    Article  PubMed  Google Scholar 

  54. Brown WE, Eliez S, Menon V, et al. Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology. 2001;56:781–3.

    Article  PubMed  Google Scholar 

  55. Steinbrink C, Vogt K, Kastrup A, et al. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia. 2008;46:3170–8.

    Article  PubMed  Google Scholar 

  56. Galaburda AM, Kemper TL. Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol. 1979;6:94–100.

    Article  PubMed  Google Scholar 

  57. Galaburda AM, Sherman GF, Rosen GD, et al. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol. 1985;18:222–33.

    Article  PubMed  Google Scholar 

  58. Temple E, Deutsch GK, Poldrack RA, et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc Natl Acad Sci USA. 2003;100:2860–5.

    Article  PubMed  Google Scholar 

  59. Simos PG, Breier JI, Fletcher JM, et al. Brain mechanisms for reading words and pseudowords: an integrated approach. Cereb Cortex. 2002;12:297–305.

    Article  PubMed  Google Scholar 

  60. Simos PG, Fletcher JM, Sarkari S, et al. Altering the brain circuits for reading through intervention: a magnetic source imaging study. Neuropsychology. 2007;21: 485–96.

    Article  PubMed  Google Scholar 

  61. Simos PG, Fletcher JM, Sarkari S, et al. Intensive instruction affects brain magnetic activity associated with oral word reading in children with persistent reading disabilities. J Learn Disabil. 2007;40:37–48.

    Article  PubMed  Google Scholar 

  62. McGuiness C, McGuiness D, McGuiness G. Phono-Graphix: a new method for remediating reading difficulties. Ann Dyslexia. 1996;46:73–96.

    Article  Google Scholar 

  63. Ihnot C, Mastoff J, Gavin J, Hendrickson L. Read naturally. St. Paul, MN: Read Naturally; 2001.

    Google Scholar 

  64. Papanicolaou AC, Pazo-Alvarez P, Castillo EM, et al. Functional neuroimaging with MEG: normative language profiles. NeuroImage. 2006;33:326–42.

    Article  PubMed  Google Scholar 

  65. Ben-Shachar M, Dougherty RF, Wandell BA. White matter pathways in reading. Curr Opin Neurobiol. 2007;17:258–70.

    Article  PubMed  Google Scholar 

  66. Beaulieu C, Plewes C, Paulson LA, et al. Imaging brain connectivity in children with diverse reading ability. NeuroImage. 2005;25:1266–71.

    Article  PubMed  Google Scholar 

  67. Niogi SN, McCandliss BD. Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia. 2006;44:2178–88.

    Article  PubMed  Google Scholar 

  68. Klingberg T, Hedehus M, Temple E, et al. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron. 2000;25:493–500.

    Article  PubMed  Google Scholar 

  69. Dougherty RF, Ben-Shachar M, Deutsch GK, et al. Temporal–callosal pathway diffusivity predicts phonological skills in children. Proc Natl Acad Sci USA. 2007;104:8556–61.

    Article  PubMed  Google Scholar 

  70. Tallal P, Merzenich MM, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res. 1998;123:210–9.

    Article  PubMed  Google Scholar 

  71. Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7:12–36.

    Article  PubMed  Google Scholar 

  72. Dehaene S. The number sense. New York, NY: Oxford University Press; 1997.

    Google Scholar 

  73. Temple E, Posner MI. Brain mechanisms of quantity are similar in 5-year-old children and adults. Proc Natl Acad Sci USA. 1998;95:7836–41.

    Article  PubMed  Google Scholar 

  74. Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20:487–506.

    Article  PubMed  Google Scholar 

  75. Dehaene S, Molko N, Cohen L, Wilson AJ. Arithmetic and the brain. Curr Opin Neurobiol. 2004;14:218–24.

    Article  PubMed  Google Scholar 

  76. Chochon F, Cohen L, van de Moortele PF, Dehaene S. Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci. 1999;11:617–30.

    Article  PubMed  Google Scholar 

  77. Menon V, Rivera SM, White CD, et al. Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage. 2000;12:357–65.

    Article  PubMed  Google Scholar 

  78. Eger E, Sterzer P, Russ MO, et al. A supramodal number representation in human intraparietal cortex. Neuron. 2003;37:719–25.

    Article  PubMed  Google Scholar 

  79. Pinel P, Dehaene S, Riviere D, LeBihan D. Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage. 2001;14:1013–26.

    Article  PubMed  Google Scholar 

  80. Duffau H, Denvil D, Lopes M, et al. Intraoperative mapping of the cortical areas involved in multiplication and subtraction: an electrostimulation study in a patient with a left parietal glioma. J Neurol Neurosurg Psychiatry. 2002;73:733–8.

    Article  PubMed  Google Scholar 

  81. Whalen J, McCloskey M, Lesser RP, Gordon B. Localizing arithmetic processes in the brain: evidence from transient deficit during cortical stimulation. J Cogn Neurosci. 1997;9:409–17.

    Article  Google Scholar 

  82. Pesenti M, Thioux M, Seron X, De Volder A. Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: a PET study. J Cogn Neurosci. 2000;12:461–79.

    Article  PubMed  Google Scholar 

  83. Dehaene S, Spelke E, Pinel P, et al. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science. 1999;284:970–4.

    Article  PubMed  Google Scholar 

  84. Lee KM, Kang SY. Arithmetic operation and working memory: differential suppression in dual tasks. Cognition. 2002;83:B63–8.

    Article  PubMed  Google Scholar 

  85. Piazza M, Mechelli A, Butterworth B, Price CJ. Are subitizing and counting implemented as separate or functionally overlapping processes? NeuroImage. 2002;15:435–46.

    Article  PubMed  Google Scholar 

  86. Corbetta M, Kincade JM, Ollinger JM, et al. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci. 2000;3:292–7.

    Article  PubMed  Google Scholar 

  87. Simon O, Mangin JF, Cohen L, et al. Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron. 2002;33:475–87.

    Article  PubMed  Google Scholar 

  88. Clark C, Klonoff H, Hayden M. Regional cerebral glucose metabolism in Turner syndrome. Can J Neurol Sci. 1990;17:140–4.

    PubMed  Google Scholar 

  89. Reiss AL, Freund L, Plotnick L, et al. The effects of X monosomy on brain development: monozygotic twins discordant for Turner’s syndrome. Ann Neurol. 1993;34:95–107.

    Article  PubMed  Google Scholar 

  90. Reiss AL, Mazzocco MM, Greenlaw R, et al. Neurodevelopmental effects of X monosomy: a volumetric imaging study. Ann Neurol. 1995;38:731–8.

    Article  PubMed  Google Scholar 

  91. Rivera SM, Menon V, White CD, et al. Functional brain activation during arithmetic processing in females with fragile X Syndrome is related to FMR1 protein expression. Hum Brain Mapp. 2002;16:206–18.

    Article  PubMed  Google Scholar 

  92. Kucian K, Loenneker T, Dietrich T, et al. Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behav Brain Funct. 2006;2:31.

    Article  PubMed  Google Scholar 

  93. Rotzer S, Kucian K, Martin E, et al. Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage. 2008;39:417–22.

    Article  PubMed  Google Scholar 

  94. Barnea-Goraly N, Eliez S, Menon V, et al. Arithmetic ability and parietal alterations: a diffusion tensor imaging study in velocardiofacial syndrome. Brain Res Cogn Brain Res. 2005;25:735–40.

    Article  PubMed  Google Scholar 

  95. van Eimeren L, Niogi SN, McCandliss BD, et al. White matter microstructures underlying mathematical abilities in children. NeuroReport. 2008;19:1117–21.

    Article  PubMed  Google Scholar 

  96. Abbott R, Berninger V. Structural equation modeling of relationships among developmental skills and writing skills in primary and intermediate grade writers. J Educ Psychol. 1993;85:478–508.

    Article  Google Scholar 

  97. Berninger VW, Abbott RD, Jones J, et al. Early development of language by hand: composing, reading, listening, and speaking connections; three letter-writing modes; and fast mapping in spelling. Dev Neuropsychol. 2006;29:61–92.

    Article  PubMed  Google Scholar 

  98. Berninger VW, Abbott RD, Abbott SP, et al. Writing and reading: connections between language by hand and language by eye. J Learn Disabil. 2002;35:39–56.

    Article  PubMed  Google Scholar 

  99. Basso A, Taborelli A, Vignolo LA. Dissociated disorders of speaking and writing in aphasia. J Neurol Neurosurg Psychiatry. 1978;41:556–63.

    Article  PubMed  Google Scholar 

  100. Henry ML, Beeson PM, Stark AJ, Rapcsak SZ. The role of left perisylvian cortical regions in spelling. Brain Lang. 2007;100:44–52.

    Article  PubMed  Google Scholar 

  101. Roeltgen D. Agraphia. In: Valenstein KMHE, editor. Clinical neuropsychology, vol. 4. New York, NY: Oxford University Press; 2003. p. 75–96.

    Google Scholar 

  102. Booth JR, Burman DD, Meyer JR, et al. Development of brain mechanisms for processing orthographic and phonologic representations. J Cogn Neurosci. 2004;16:1234–49.

    Article  PubMed  Google Scholar 

  103. Booth JR, Cho S, Burman DD, Bitan T. Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Dev Sci. 2007;10:441–51.

    Article  PubMed  Google Scholar 

  104. Richards T, Berninger V, Nagy W, Parsons AC, Fields KM, Richards A. Brain activation during language tasks activation contrasts in children with and without dyslexia: inferring mapping processes and assessing response to spelling instruction. Educ Child Psychol. 2005;22:62–80.

    Google Scholar 

  105. Richards TL, Berninger VW, Stock P, et al. Functional magnetic resonance imaging sequential-finger movement activation differentiating good and poor writers. J Clin Exp Neuropsychol. 2009;31:1–17.

    Article  Google Scholar 

  106. Torgesen JK. Recent discoveries on remedial interventions for children with dyslexia. Maiden, MA: Blackwell; 2006.

    Google Scholar 

  107. Shaywitz SE, Morris R, Shaywitz BA. The education of dyslexic children from childhood to young adulthood. Annu Rev Psychol. 2008;59:451–75.

    Article  PubMed  Google Scholar 

  108. Shaywitz S. Overcoming dyslexia: a new and complete science-based program for reading problems at any level. New York, NY: Vintage Books; 2003. p. 414.

    Google Scholar 

  109. Foorman BR, Francis DJ, Shaywitz SE, Shaywitz BA, Fletcher JM. The case for early reading intervention. In: Blachman BA, editor. Foundations of reading acquisition and dyslexia: implications for early intervention. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers; 1997. p. 243–64.

    Google Scholar 

  110. Torgesen JK, Alexander AW, Wagner RK, et al. Intensive remedial instruction for children with severe reading disabilities: immediate and long-term outcomes from two instructional approaches. J Learn Disabil. 2001;34(33–58): 78.

    Google Scholar 

  111. Hecht SA, Torgesen JK, Wagner RK, Rashotte CA. The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades. J Exp Child Psychol. 2001;79:192–227.

    Article  PubMed  Google Scholar 

  112. Langenbereg DN. Report of the National Reading Panel. Washington, DC: National Institute of Child Health and Human Development; 2000.

    Google Scholar 

  113. Wilson AJ, Dehaene S, Pinel P, et al. Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behav Brain Funct. 2006;2:19.

    Article  PubMed  Google Scholar 

  114. Wilson AJ, Revkin SK, Cohen D, et al. An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behav Brain Funct. 2006;2:20.

    Article  PubMed  Google Scholar 

  115. Baker S, Gersten R, Lee D. A synthesis of empirical research on teaching mathematics to low-achieving students. Elem School J. 2002;103:51–73.

    Article  Google Scholar 

  116. Wanzek J, Vaughn S, Wexler J, et al. A synthesis of spelling and reading interventions and their effects on the spelling outcomes of students with LD. J Learn Disabil. 2006;39:528–43.

    Article  PubMed  Google Scholar 

  117. Feder KP, Majnemer A. Handwriting development, competency, and intervention. Dev Med Child Neurol. 2007;49:312–7.

    Article  PubMed  Google Scholar 

  118. Hale JB, Fiorello CA. School neuropsychology: a practitioner’s handbook. New York, NY: Guilford Press; 2004.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Penelope Zeifert, Ph.D., and Peter Karzmark, Ph.D., ABPP-CN, at Stanford University Medical Center for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle K. Deutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deutsch, G.K., Davis, R.N. (2010). Learning Disabilities. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1364-7_13

Download citation

Publish with us

Policies and ethics