Skip to main content

Microfluidics for Gamete Manipulation and Embryo Culture

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

Microfluidics is an emerging field that holds immense potential for scientific discovery. By utilizing microfluidics, knowledge can be obtained in basic gamete/embryo developmental biology as well as expand our understanding in specialized areas, such as assisted reproduction. This review describes the technology of microfluidics and discusses applications for assisted reproduction technology. Development of an integrated microfluidic platform for assisted reproduction, which can manipulate gametes, embryos, their culture environment, and incorporate biomarker analysis, could have a dramatic impact on basic understanding of embryo physiology as well as provide significant improvements in current assisted reproductive technologies focused on treating infertility and preserving fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagmann M. Fertility therapy may aid gene transfer. Science. 1999;284:1097–8.

    Article  PubMed  CAS  Google Scholar 

  2. Velander WH, Lubon H, Drohan WN. Transgenic livestock as drug factories. Sci Am. 1997;276:70–4.

    Article  PubMed  CAS  Google Scholar 

  3. Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000;407:86–90.

    Article  PubMed  CAS  Google Scholar 

  4. Ravindranatha BM, Nandi S, Raghu HM, Reddy SM. In vitro maturation and fertilization of buffalo oocytes: effects of storage of ovaries, IVM temperatures, storage of processed sperm and fertilization media. Reprod Domest Anim. 2003;38:21–6.

    Article  PubMed  CAS  Google Scholar 

  5. Xie Y, Wang F, Zhong W, et al. Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod. 2006;75:45–55.

    Article  PubMed  CAS  Google Scholar 

  6. Beebe D, Wheeler M, Zeringue H, Walters E, Raty S. Microfluidic technology for assisted reproduction. Theriogenology. 2002;57: 125–35.

    Article  PubMed  CAS  Google Scholar 

  7. Beebe DJ, Mensing GA, Walker GM. Physics and applications of microfluidics in biology. Annu Rev Biomed Eng. 2002;4:261–86.

    Article  PubMed  CAS  Google Scholar 

  8. Quake SR, Scherer A. From micro- to nanofabrication with soft materials. Science. 2000;290:1536–40.

    Article  PubMed  CAS  Google Scholar 

  9. Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis. 2003;24:3563–76.

    Article  PubMed  CAS  Google Scholar 

  10. Walker G, Ozers M, Beebe DJ. Insect cell culture in microfluidic channels. Biomed Microdevices. 2002;4:161–6.

    Article  CAS  Google Scholar 

  11. Raty S, Beebe DJ, Rodriguez-Zas SL, Wheeler MB. Culture in microchannels enhances in vitro embryonic development of preimplantation mouse embryos. Theriogenology. 2001;55:241.

    Google Scholar 

  12. Huang WH, Cheng W, Zhang Z, et al. Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem. 2004;76:483–8.

    Article  PubMed  CAS  Google Scholar 

  13. Cho BS, Schuster TG, Zhu X, et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75:1671–5.

    Article  PubMed  CAS  Google Scholar 

  14. Davis JA, Raty S, Eddington DT, Glasgow IK, Zeringue HC, Wheeler MB, et al. Development of microfluidic channels for the culture of mammalian embryos. In: First annual international IEEE-EMBS special topic conference on microtechnologies in medicine & biology proceedings; 2000. p. 307–10.

    Google Scholar 

  15. Glasgow IK, Zeringue HC, Beebe DJ, Choi SJ, Lyman J, Wheeler MB. Individual embryo transport on a chip for a total analysis system. In: Third international symposium on micro-total analysis system; 1998. p. 13–16.

    Google Scholar 

  16. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7:75–81.

    Article  PubMed  Google Scholar 

  17. Jurema MW, Nogueira D. In vitro maturation of human oocytes for assisted reproduction. Fertil Steril. 2006;86:1277–91.

    Article  PubMed  Google Scholar 

  18. Mikkelsen AL. Strategies in human in-vitro maturation and their clinical outcome. Reprod Biomed Online. 2005;10:593–9.

    Article  PubMed  Google Scholar 

  19. Papanikolaou EG, Platteau P, Albano C, et al. Immature oocyte in-vitro maturation: clinical aspects. Reprod Biomed Online. 2005;10:587–92.

    Article  PubMed  CAS  Google Scholar 

  20. Piquette GN. The in vitro maturation (IVM) of human oocytes for in vitro fertilization (IVF): is it time yet to switch to IVM-IVF? Fertil Steril. 2006;85:833–5; discussion 841.

    Google Scholar 

  21. Brinsden PR, Wada I, Tan SL, Balen A, Jacobs HS. Diagnosis, prevention and management of ovarian hyperstimulation syndrome. Br J Obstet Gynaecol. 1995;102:767–72.

    Article  PubMed  CAS  Google Scholar 

  22. Check ML, Brittingham D, Check JH, Choe JK. Pregnancy following transfer of cryopreserved-thawed embryos that had been a result of fertilization of all in vitro matured metaphase or germinal stage oocytes. Case report. Clin Exp Obstet Gynecol. 2001;28:69–70.

    PubMed  CAS  Google Scholar 

  23. Liu J, Lu G, Qian Y, Mao Y, Ding W. Pregnancies and births achieved from in vitro matured oocytes retrieved from poor responders undergoing stimulation in in vitro fertilization cycles. Fertil Steril. 2003;80:447–9.

    Article  PubMed  Google Scholar 

  24. Albertini DF, Sanfins A, Combelles CM. Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online. 2003;6:410–5.

    Article  PubMed  CAS  Google Scholar 

  25. Fauser BC, Bouchard P, Coelingh Bennink HJ, et al. Alternative approaches in IVF. Hum Reprod Update. 2002;8:1–9.

    Article  PubMed  Google Scholar 

  26. Hardy K, Wright CS, Franks S, Winston RM. In vitro maturation of oocytes. Br Med Bull. 2000;56:588–602.

    Article  PubMed  CAS  Google Scholar 

  27. Hendriksen PJ, Vos PL, Steenweg WN, Bevers MM, Dieleman SJ. Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology. 2000;53:11–20.

    Article  PubMed  CAS  Google Scholar 

  28. Krisher RL, Lane M, Bavister BD. Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol Reprod. 1999;60:1345–52.

    Article  PubMed  CAS  Google Scholar 

  29. Spindler RE, Pukazhenthi BS, Wildt DE. Oocyte metabolism predicts the development of cat embryos to blastocyst in vitro. Mol Reprod Dev. 2000;56:163–71.

    Article  PubMed  CAS  Google Scholar 

  30. Walters EM, Beebe DJ, Wheeler MB. In vitro maturation of pig oocytes in polydimethylsiloxane (PDMS) and silicon microfluidic devices. Theriogenology. 2001;55:497.

    Google Scholar 

  31. Hester PN, Roseman HM, Clark SG, Walters EM, Beebe DJ, Wheeler MB. Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilicate microchannels. Theriogenology. 2002;57:723.

    Google Scholar 

  32. Mosher WD, Pratt WF. Fecundity and infertility in the United States: incidence and trends. Fertil Steril. 1991;56:192–3.

    PubMed  CAS  Google Scholar 

  33. Mortimer D. Sperm transfer in the human female reproductive tract. Oxford: Oxford University Press; 1989.

    Google Scholar 

  34. Trounson A, Gardner DK. Handbook of in vitro fertilization. Boca Raton: CRC Press LLC; 2000.

    Google Scholar 

  35. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.

    PubMed  CAS  Google Scholar 

  36. Zini A, Finelli A, Phang D, Jarvi K. Influence of semen processing technique on human sperm DNA integrity. Urology. 2000;56:1081–4.

    Article  PubMed  CAS  Google Scholar 

  37. Zini A, Mak V, Phang D, Jarvi K. Potential adverse effect of semen processing on human sperm deoxyribonucleic acid integrity. Fertil Steril. 1999;72:496–9.

    Article  PubMed  CAS  Google Scholar 

  38. Virant-Klun I, Tomazevic T, Meden-Vrtovec H. Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet. 2002;19:319–28.

    Article  PubMed  Google Scholar 

  39. Benchaib M, Braun V, Lornage J, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.

    Article  PubMed  Google Scholar 

  40. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  41. Bungum M, Humaidan P, Spano M, et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19:1401–8.

    Article  PubMed  CAS  Google Scholar 

  42. Henkel R, Hajimohammad M, Stalf T, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  PubMed  CAS  Google Scholar 

  43. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  PubMed  CAS  Google Scholar 

  44. Carrell DT, Liu L, Peterson CM, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49:49–55.

    Article  PubMed  CAS  Google Scholar 

  45. Englert Y, Van den Bergh M, Rodesch C, et al. Comparative auto-controlled study between swim-up and Percoll preparation of fresh semen samples for in-vitro fertilization. Hum Reprod. 1992;7:399–402.

    PubMed  CAS  Google Scholar 

  46. Smith S, Hosid S, Scott L. Use of postseparation sperm parameters to determine the method of choice for sperm preparation for assisted reproductive technology. Fertil Steril. 1995;63: 591–7.

    PubMed  CAS  Google Scholar 

  47. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  PubMed  CAS  Google Scholar 

  48. Schultz RM, Williams CJ. The science of ART. Science. 2002;296:2188–90.

    Article  PubMed  CAS  Google Scholar 

  49. Palermo GD, Alikani M, Bertoli M, et al. Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection. Hum Reprod. 1996;11:172–6.

    Article  PubMed  CAS  Google Scholar 

  50. Nagy ZP, Liu J, Joris H, et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod. 1995;10:3171–7.

    PubMed  CAS  Google Scholar 

  51. Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem. 2000;72:3158–64.

    Article  PubMed  CAS  Google Scholar 

  52. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288:113–6.

    Article  PubMed  CAS  Google Scholar 

  53. Dietl JA, Rauth G. Molecular aspects of mammalian fertilization. Hum Reprod. 1989;4:869–75.

    PubMed  CAS  Google Scholar 

  54. Hickman DL, Beebe DJ, Rodriguez-Zas SL, Wheeler MB. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med. 2002;52:122–6.

    PubMed  CAS  Google Scholar 

  55. Funahashi H, Fujiwara T, Nagai T. Modulation of the function of boar spermatozoa via adenosine and fertilization promoting peptide receptors reduce the incidence of polyspermic penetration into porcine oocytes. Biol Reprod. 2000;63:1157–63.

    Article  PubMed  CAS  Google Scholar 

  56. Li YH, Ma W, Li M, et al. Reduced polyspermic penetration in porcine oocytes inseminated in a new in vitro fertilization (IVF) system: straw IVF. Biol Reprod. 2003;69:1580–5.

    Article  PubMed  CAS  Google Scholar 

  57. Ranoux C, Poirot C, Foulot H, et al. Human egg fertilization in capillary tubes. J In Vitro Fert Embryo Transf. 1988;5:49–50.

    Article  PubMed  CAS  Google Scholar 

  58. Ranoux C, Seibel MM. New techniques in fertilization: intravaginal culture and microvolume straw. J In Vitro Fert Embryo Transf. 1990;7:6–8.

    Article  PubMed  CAS  Google Scholar 

  59. van der Ven HH, Hoebbel K, al-Hasani S, Diedrich K, Krebs D. Fertilization of human oocytes in capillary tubes with very small numbers of spermatozoa. Hum Reprod. 1989;4:72–6.

    PubMed  Google Scholar 

  60. Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5:1229–32.

    Article  PubMed  CAS  Google Scholar 

  61. Ahlgren M. Sperm transport to and survival in the human fallopian tube. Gynecol Invest. 1975;6:206–14.

    Article  PubMed  CAS  Google Scholar 

  62. Settlage DS, Motoshima M, Tredway DR. Sperm transport from the external cervical os to the fallopian tubes in women: a time and quantitation study. Fertil Steril. 1973;24:655–61.

    PubMed  CAS  Google Scholar 

  63. Suh RS, Zhu X, Phadke N, et al. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21:477–83.

    Article  PubMed  Google Scholar 

  64. Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Suppl 3):148–59; discussion 160.

    Google Scholar 

  65. Glasgow IK, Zeringue HC, Beebe DJ, et al. Handling individual mammalian embryos using microfluidics. IEEE Trans Biomed Eng. 2001;48:570–8.

    Article  PubMed  CAS  Google Scholar 

  66. Walters EM, Clark S, Roseman HM, Beebe DJ, Wheeler MB. Production of live piglets following in vitro embryo culture in a microfluidic environment. Theriogenology. 2003;59:353.

    Google Scholar 

  67. Raty S, Walters EM, Davis J, et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip. 2004;4:186–90.

    Article  PubMed  CAS  Google Scholar 

  68. Heo Y, Cabrera L, Bormann C, et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25:613–22.

    Article  PubMed  CAS  Google Scholar 

  69. Gu W, Zhu X, Futai N, Cho BS, Takayama S. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A. 2004;101:15861–6.

    Article  PubMed  CAS  Google Scholar 

  70. Manser R, Leese H, Houghton F. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol Reprod. 2004;71:528–33.

    Article  PubMed  CAS  Google Scholar 

  71. Biggers J. History of KSOM, a single medium for embryo culture. Fertil World. 2005;3:4–5.

    Google Scholar 

  72. Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod. 2005;20:1364–71.

    Article  PubMed  CAS  Google Scholar 

  73. Feil D, Lane M, Roberts CT, et al. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol Lond. 2006;572:87–96.

    PubMed  CAS  Google Scholar 

  74. Mitchell M, Cashman K, Gardner D, Thompson J, Lane M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol Reprod. 2009;80:295–301.

    Article  PubMed  CAS  Google Scholar 

  75. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69:1109–17.

    Article  PubMed  CAS  Google Scholar 

  76. Schultz R. Regulation of zygotic gene activation in the mouse. Bioessays. 1993;15:531–8.

    Article  PubMed  CAS  Google Scholar 

  77. Ma J, Svoboda P, Schultz R, Stein P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod. 2001;64:1713–21.

    Article  PubMed  CAS  Google Scholar 

  78. Johnson M, Ziomek C. Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J Cell Biol. 1981;91:303–8.

    Article  PubMed  CAS  Google Scholar 

  79. Johnson M, Maro B, Takeichi M. The role of cell adhesion in the synchronisation and orientation of polarisation in 8-cell mouse blastomeres. J Embryol Exp Morphol. 1986;93:239–55.

    PubMed  CAS  Google Scholar 

  80. Borland R, Biggers J, LeChene C. Studies on the composition and formation of mouse blastocoele fluid using electron probe microanalysis. Dev Biol. 1977;55:1–8.

    Article  PubMed  CAS  Google Scholar 

  81. Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172:221–36.

    Article  PubMed  CAS  Google Scholar 

  82. Diaz-Cueto L, Gerton GL. The influence of growth factors on the development of preimplantation mammalian embryos. Arch Med Res. 2001;32:619–26.

    Article  PubMed  CAS  Google Scholar 

  83. Lavranos TC, Rathjen PD, Seamark RF. Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos. J Reprod Fertil. 1995;105:331–8.

    Article  PubMed  CAS  Google Scholar 

  84. Zolti M, Bider D, Benrafael Z, et al. Cytokine involvement in oocytes and early embryos. Fertil Steril. 1991;56:265–72.

    PubMed  CAS  Google Scholar 

  85. Rappolee DA, Sturm KS, Behrendtsen O, et al. Insulin-like growth factor-II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 1992;6:939–52.

    Article  PubMed  CAS  Google Scholar 

  86. Osterlund C, Wramsby H, Pousette A. Temporal expression of platelet-derived growth factor (PDGF)-A and its receptor in human preimplantation embryos. Mol Hum Reprod. 1996;2:507–12.

    Article  PubMed  CAS  Google Scholar 

  87. Brice EC, Wu JX, Muraro R, Adamson ED, Wiley LM. Modulation of mouse preimplantation development by epidermal growth-­factor receptor antibodies, antisense RNA, and deoxyoligonucleotides. Dev Genet. 1993;14:174–84.

    Article  PubMed  CAS  Google Scholar 

  88. Babalola GO, Schultz RM. Modulation of gene-expression in the preimplantation mouse embryo by TGF-alpha and TGF-beta. Mol Reprod Dev. 1995;41:133–9.

    Article  PubMed  CAS  Google Scholar 

  89. Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3:155–63.

    Article  PubMed  CAS  Google Scholar 

  90. Young LE, Fernandes K, McEvoy TG, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.

    Article  PubMed  CAS  Google Scholar 

  91. Hickman DL, Beebe DJ, Rodriguez-Zas SL, Wheeler MB. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med. 2002;52:122–6.

    PubMed  CAS  Google Scholar 

  92. Gardner DK, Lane M. Amino-acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48:377–85.

    Article  PubMed  CAS  Google Scholar 

  93. Johnson MH, Nasresfahani MH. Radical solutions and cultural-problems—could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in-vitro. Bioessays. 1994;16:31–8.

    Article  PubMed  CAS  Google Scholar 

  94. Fukui Y, Lee ES, Araki N. Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J Anim Sci. 1996;74:2752–8.

    PubMed  CAS  Google Scholar 

  95. Clark SG, Walters EM, Beebe DJ, Wheeler MB. A novel integrated in vitro maturation and in vitro fertilization system for swine. Theriogenology. 2003;59:441.

    Google Scholar 

  96. Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip. 2006;6:1424–31.

    Article  PubMed  CAS  Google Scholar 

  97. Shackman JG, Dahlgren GM, Peters JL, Kennedy RT. Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip. 2005;5:56–63.

    Article  PubMed  CAS  Google Scholar 

  98. Mehta G, Mehta K, Sud D, et al. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices. 2007;9:123–34.

    Article  PubMed  CAS  Google Scholar 

  99. Papanikolaou EG, Camus M, Fatemi HM, et al. Early pregnancy loss is significantly higher after day 3 single embryo transfer than after day 5 single blastocyst transfer in GnRH antagonist stimulated IVF cycles. Reprod Biomed Online. 2006;12:60–5.

    Article  PubMed  CAS  Google Scholar 

  100. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11:1975–8.

    Article  PubMed  CAS  Google Scholar 

  101. Bormann CL, Chisolm CN, Heo YS, Takayama S, Smith GD. Development of a sensitive assay to measure lactate production of preimplantation embryos. Fertil Steril. 2006;86:S115.

    Article  Google Scholar 

  102. Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85:101–7.

    Article  PubMed  CAS  Google Scholar 

  103. Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86:678–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Carrie Smith for critically reviewing this manuscript. We recognize and appreciate financial support from National Institutes of Health (NIH; HD 049607–01—S.T & G.D.S), United States Department of Agriculture (USDA; 2005–35203–16148—G.D.S & S.T), the Michigan Economic Development Corporation (MEDC; GR 696—S.T & G.D.S) Support for C.B. was provided by NIH Training Grant in Reproductive Sciences T32-HD07048 (G.D.S). We apologize to those whose work we have not cited owing to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Smith PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smith, G.D., Bormann, C., Takayama, S. (2012). Microfluidics for Gamete Manipulation and Embryo Culture. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics